
	

	

	

HELLO ANTI
DISASSEMBLY

	

	

Anti-Disassembly	
techniques	and	their	
mitigations	

Contents
The	workshop	description	...	3	

Requirements	..	3	

Setting	up	the	environment	...	4	

Configuring	IDA	Pro	6.8	..	4	

Configuring	Dev-C++	..	4	

IDA	Pro	Python	functions	...	5	

Heads(start=None,	end=None)	..	5	

GetMnem(ea)	..	5	

Message(msg)	..	5	

GetOpnd(ea,n)	...	5	

FindBinary(ea,	flag,	searchstr,	radix=16)	...	6	

SegStart(ea)	...	6	

SetColor(ea,	what,	color)	...	6	

Quick	overview	of	disassembler	methods	...	8	

Linear	disassembly	...	8	

Flow	oriented	disassembly	..	8	

Anti-disassembly	techniques	...	9	

Initial	C	code	..	9	

Case	1:	Overlapping	instructions	...	10	

Case	2:	Jump	with	constant	condition	...	14	

Case3:	JZ/JNZ	instruction	with	the	same	target	...	17	

Putting	the	entire	script	together	..	20	

	

List of figures
Figure	1:	IDA	Options	...	4	
Figure	2:	Dev-C++	Compiler	Options	..	5	
Figure	3:	The	initial	C	code	representation	by	IDA	Pro	..	9	
Figure	4:	Case1:	Messed	up	code	..	11	
Figure	5:	Case	1:	fixing	-	step	#1	..	11	
Figure	6:	Case	1:	fixing	-	step	#2	..	11	
Figure	7:	Case	1:	fixing	-	step	#3	..	12	
Figure	8:	Case	1:	fixing	-	step	#4	..	12	
Figure	9:	Case	2:	Messed	up	code	..	15	
Figure	10:	Case	2:	After	fix	...	15	

Figure	11:	Case	2:	After	patching	...	15	
Figure	12:	Case	3:	Messed	up	code	...	18	
Figure	13:	Case	3:	After	fix	and	patching	...	18	
	

	

	

The workshop description
The	goal	of	the	workshop	is	a	short	introduction	to	anti-disassembly	techniques.	We	will	review	how	the	
two	 main	 types	 of	 disassembler	 works,	 and	 why	 they	 can	 be	 fooled,	 then	 we	 will	 cover	 3	 typical	
techniques.	 As	 part	 of	 each	 exercise	 we	 will	 create	 our	 own	 short	 C	 code,	 which	 will	 cause	 the	
disassembler	to	incorrectly	parse	our	code,	then	we	will	see	how	we	can	manually	find	and	correct	it	in	
IDA	Pro.	As	a	last	step	we	will	create	a	short	Python	script	for	IDA	Pro,	which	will	automatically	find	and	
mark	 these	 techniques	 for	 us.	We	will	 also	 check	 how	we	 can	 patch	 the	 code	 from	 an	 IDA	 Script	 to	
defeat	the	anti-disassembly	techniques.	

Requirements
• Dev-C++	http://sourceforge.net/projects/orwelldevcpp/	
• Python	https://www.python.org/	
• Ida	Pro	Demo	6.8	https://www.hex-rays.com/products/ida/support/download_demo.shtml	
• Idapython	1.7.1	https://code.google.com/p/idapython/wiki/Downloads	

	

	 	

Setting up the environment
Configuring IDA Pro 6.8
After	downloading	and	installing	IDA	Pro	6.8,	we	need	to	download	idapython,	and	extract	it	to	the	IDA	
Pro	installation	directory.	This	will	enable	us	to	use	Python	scripts	in	IDA.	
To	see	the	opcodes	we	need	to	set	it	at	Options	->	General:	

	

Figure	1:	IDA	Options	

This	has	to	be	done	each	time	we	open	IDA	Pro.	

Configuring Dev-C++
After	installing	Dev-C++	we	need	to	tell	it	that	we	will	use	assembly	with	Intel	syntax.	This	can	be	done	in		
Tools	 ->	 Compiler	 Options,	 with	 adding	 -masm=intel	 on	 the	 General	 tab,	 and	 selecting	 “32-bit	
Release”	at	“Compiler	set	to	configure”	drop	down	list.	

	

Figure	2:	Dev-C++	Compiler	Options	

IDA Pro Python functions
Here	is	a	quick	review	of	the	specific	IDA	Pro	Python	functions	that	we	will	use	in	our	scripts.	

Source:	https://www.hex-rays.com/products/ida/support/idapython_docs/	

Heads(start=None, end=None)
Get	a	list	of	heads	(instructions	or	data).	
	
Parameters:	

start	-	start	address	(default:	inf.minEA)	
end	-	end	address	(default:	inf.maxEA)	

	
Returns:	

list	of	heads	between	start	and	end	

GetMnem(ea)
Get	instruction	mnemonics.	
	
Parameters:	

ea	-	linear	address	of	instruction	
	
Returns:	

""	-	no	instruction	at	the	specified	location	
	
Note:	this	function	may	not	return	exactly	the	same	mnemonics	as	you	see	on	the	screen.	

Message(msg)
Display	a	message	in	the	message	window.	
	
Parameters:	

msg	-	message	to	print	(formatting	is	done	in	Python)	
	
This	function	can	be	used	to	debug	IDC	scripts	

GetOpnd(ea,n)
Get	operand	of	an	instruction.	

	
Parameters:	

ea	-	linear	address	of	instruction	
n	-	number	of	operand:	0	-	the	first	operand	1	-	the	second	operand	

	
Returns:	

the	current	text	representation	of	operand	or	""	

FindBinary(ea, flag, searchstr, radix=16)
Parameters:	

ea	-	start	address	
flag	-	combination	of	SEARCH_*	flags	
searchstr	-	a	string	as	a	user	enters	it	for	Search	Text	in	Core	
radix	-	radix	of	the	numbers	(default=16)	

	
Returns:	

ea	of	result	or	BADADDR	if	not	found	
	
Note:	Example:	"41	42"	-	find	2	bytes	41h,42h	(radix	is	16)	
	
Flags:	
SEARCH_UP	=	0	
SEARCH_DOWN	=	1	
SEARCH_NEXT	=	2	
SEARCH_CASE	=	4	
SEARCH_REGEX	=	8	
SEARCH_NOBRK	=	16	
SEARCH_NOSHOW	=	32	

SegStart(ea)
Get	start	address	of	a	segment	
	
Parameters:	

ea	-	any	address	in	the	segment	
	
Returns:	

start	of	segment	BADADDR	-	the	specified	address	doesn't	belong	to	any	segment	

SetColor(ea, what, color)
Set	item	color.	
	
Parameters:	

ea	-	address	of	the	item	
what	-	type	of	the	item	(one	of	CIC_*	constants)	
color	-	new	color	code	in	RGB	(hex	0xBBGGRR)	

	
Returns:	

success	(True	or	False)	
	

CIC_*	constants:	
CIC_ITEM	=	1	
CIC_FUNC	=	2	
CIC_SEGM	=	3	
	 	

Quick overview of disassembler methods
The	next	section	will	cover	the	basics	of	the	two	typical	disassembler	methods:	linear	and	flow	oriented.	

Linear disassembly
This	technique	is	the	simplest	one.	The	disassembler	will	go	through	the	code,	byte	by	byte	in	a	 linear	
way,	and	will	try	to	translate	each	opcode	to	assembly	instruction,	 it	will	calculate	the	length	of	 it	and	
the	 next	 instruction	 will	 begin	 where	 the	 previous	 one	 ended.	 This	 strategy	 is	 commonly	 used	 by	
debuggers.	

The	 problem	 with	 this	 strategy	 is	 that	 it	 doesn’t	 consider	 the	 program	 flow,	 and	 if	 there	 are	 data	
segments	(e.g.:	jump	table,	constant	data)	in	the	code,	it	will	try	to	interpret	those	as	opcodes,	and	thus	
it	will	break	the	assembly	comes	after.	

Flow oriented disassembly
Flow	oriented	disassemblers	(like	IDA	Pro)	will	interpret	the	various	instructions,	and	based	on	the	flow	
controls	(JMP,	CALL,	RET,	etc…)	will	build	a	table	of	locations,	which	needs	to	be	disassembled,	and	will	
only	do	those	parts,	thus	if	we	have	data	in	the	middle	of	the	code,	which	the	program	flow	will	never	
reach,	it	won’t	be	disassembled.	

When	going	through	a	list	of	the	places	identified,	the	program	has	to	choice	which	part	to	disassemble	
first.	 In	 compiler	 generated	 code,	 this	 shouldn’t	 make	 a	 difference,	 but	 with	 hand	 written	 assembly	
(what	 we	 will	 also	 do	 below),	 these	 selections	 can	 be	 utilized	 to	 break	 the	 assembled	 code.	 Two	
examples:	

1. If	there	is	a	conditional	jump	(e.g.:	JZ/JNZ),	IDA	Pro	will	first	disassemble	to	false	branch	
2. In	 case	of	CALL	 instruction,	 IDA	Pro	will	 disassemble	 the	 instructions	 after	 the	CALL,	 and	only	

later	the	called	function	location	

	

	

Anti-disassembly techniques
Initial C code
We	will	use	the	following	C	code	during	the	workshop	to	demonstrate	the	various	techniques.	The	code	
simple	prints	two	strings	to	the	standard	output.	We	will	place	our	bogus	instruction	between	the	two	
printf	calls,	which	will	cause	the	2nd	one	to	disappear	in	disassembly.	

#include <stdio.h>

void main()
 {
 printf("Hello, World!");
 printf("Not seen");
 }

This	is	how	it	looks	in	IDA	Pro:	

	

Figure	3:	The	initial	C	code	representation	by	IDA	Pro	

	

Case 1: Overlapping instructions
In	 this	 case	 a	 particular	 byte	 is	 part	 of	 multiple	 instructions.	When	 running	 the	 code,	 the	 processor	
doesn’t	 have	 any	 problem	with	 this,	 but	 during	 static	 disassembly	 there	 is	 no	 way	 to	 represent	 this	
correctly	with	the	standard	ways,	and	in	fact	none	of	the	disassemblers	can	do	that.	

Our	example	will	be	the	following	simple	situation:	

JMP	 -1	
	EB	 FF	 C0	

	
INC	 EAX	

We	have	a	short	jump	instruction	(EB	FF	/	JMP	-1),	which	will	jump	back	-1	byte,	meaning	that	the	next	
instruction	will	start	with	FF,	which	will	be	the	beginning	of	INC	EAX	(FF	C0).	When	IDA	Pro	goes	over	this	
it	 will	 disassemble	 EB	 FF	 as	 JMP	 -1	 (it	 will	 print	 the	 exact	 location	 instead	 of	 “-1”),	 and	 the	 next	
instruction	will	start	with	C0.	

Our	modified	example	code	will	be	the	following:	

#include <stdio.h>

void main() {
 printf("Hello, World!");

 asm(".intel_syntax noprefix\n" //set assembly to Intel syntax
 ".byte 0xeb\n" //short jump
 ".byte 0xff\n" //-1
 ".byte 0xc0\n" //FF C0 = INC EAX, C0 will break
the following code segment
);

 printf("Not seen");

}
If	we	load	it	to	IDA	Pro,	we	will	get	the	following:	

	

Figure	4:	Case1:	Messed	up	code	

We	can	see	that	the	2nd	printf	is	gone,	and	code	is	completely	messed	up.	

It’s	pretty	common	to	see	“jmp	short	near	ptr	loc_xxxxx	+1”	in	places	where	anti-disassembly	was	done,	
IDA	Pro	also	gives	a	red	colored	comment,	with	the	two	it’s	easy	to	spot	suspicious	places.	To	fix	this,	we	
can	covert	 the	“EB”	 instructions	 to	data	 segment,	and	 the	 rest	 to	code	segment.	To	convert	between	
data	and	code,	we	need	to	move	our	cursor	to	the	memory	segment	we	want	to	update,	and	we	press	
“D”	 (convert	 to	 data)	 or	 “C”	 (convert	 to	 code),	 depends	 to	what	we	want	 to	 do.	We	will	 need	 to	 do	
multiple	code	conversions.	

	

Figure	5:	Case	1:	fixing	-	step	#1	

	

Figure	6:	Case	1:	fixing	-	step	#2	

	

Figure	7:	Case	1:	fixing	-	step	#3	

	

Figure	8:	Case	1:	fixing	-	step	#4	

Although	we	can	see	the	correct	code	now,	the	“data”	entry	still	makes	 it	 impossible	to	make	a	graph	
mode.	As	a	 last	step	we	can	patch	that	byte	to	a	NOP	instruction,	with	a	simple	Python	function	from	
the	command	bar	at	the	bottom.	

PatchByte(0x40153A, 0x90)

	

Here	is	a	Python	script	that	will	search	for	locations	where	we	have	“EB	FF”	opcodes.	

def find_jmp_ff():
 results = []
 ea = FindBinary(SegStart(ScreenEA()), SEARCH_DOWN, "EB FF")
 while(ea != BADADDR):
 if GetMnem(ea) == "jmp":
 results.append(ea)
 Message("Found possibly anti-disassembly technique at
0x%x, instruction: %s\n" % (ea,GetDisasm(ea)))
 ea = FindBinary(ea, SEARCH_NEXT, "EB FF")
 return results

def main():
 anti_da_locations = []
 anti_da_locations.extend(find_jmp_ff())
 for i in anti_da_locations:
 SetColor(i, CIC_ITEM, 0x0000ff)

if __name__ == "__main__":
 main()

The	find_jmp_ff	function	will	start	the	search	from	the	beginning	of	the	section,	where	our	cursor	is,	and	
start	searching	for	“EB	FF”.	If	found	it	will	check	if	this	is	really	part	of	a	JMP	(and	not	somewhere	else	in	
the	 middle	 of	 another	 opcode).	 If	 yes,	 it	 will	 store	 the	 results,	 and	 search	 until	 the	 end	 (BADADDR	
found).	 The	 SEARCH_DOWN	 parameter	 means	 that	 it	 will	 search	 from	 the	 location	 downwards,	 the	
SEARCH_NEXT	is	a	search	for	the	next	place.	

Finally	we	set	the	background	color	of	the	found	instruction	to	RED.	

	

	

Case 2: Jump with constant condition
In	this	case	we	utilize	that	disassemblers,	will	disassemble	the	false	branch	of	a	tree,	which	means	if	we	
have	a	JZ	instruction,	the	opcodes	starting	at	the	jump	address,	will	be	parsed	only	after	the	false	branch	
was	examined.	Let’s	see	the	following	example:	

XOR	 JZ	
	

POP	
33	 C0	 74	 01	 E9	 58	

	
JMP	 		

	

The	XOR	instruction	will	always	make	the	JZ	statement	true,	so	the	false	branch	will	never	be	hit	in	real	
life.	The	first	 instruction	 in	the	false	path	would	start	right	after	the	JZ	 instruction,	so	the	first	opcode	
would	be	E9,	which	is	a	JMP	which	will	take	an	address	as	an	argument.	The	true	branch	starts	with	the	
opcode	 58,	 which	 is	 a	 POP	 statement.	 The	 problem	 is	 that	 JMP	will	 be	 interpreted	 first,	 and	 the	 58	
opcode	will	be	interpreted	as	part	of	the	address,	so	it	will	mess	up	the	code.	

Let’s	see	how	can	we	modify	our	C	code	to	create	such	a	trick:	

void main() {
 printf("Hello, World!");

 asm(".intel_syntax noprefix\n"
 "xor eax, eax\n"
 //"jz .later\n"
 ".byte 0x74\n"
 ".byte 0x01\n"
 //".later:\n"
 ".byte 0xe9\n"
);

 printf("Not seen");

}
74	01	will	 jump	to	the	 location	after	E9.	 If	we	use	 labels	 in	our	assembly	code,	the	compiler	will	 leave	
traces	 to	 that,	 and	 IDA	 will	 find	 it	 so	 our	 anti-disassembly	 wouldn’t	 be	 successful.	 I	 left	 it	 there	 in	
comments,	to	ease	the	understanding	of	the	code.	

If	we	load	it	to	IDA	Pro,	we	can	see	that	our	method	was	successful	again,	and	we	can’t	see	the	second	
printf	instruction.	

	

Figure	9:	Case	2:	Messed	up	code	

We	can	use	the	same	method	to	manually	correct	it.	Convert	E9	to	data,	and	the	following	parts	to	code.	

	

Figure	10:	Case	2:	After	fix	

At	the	very	end	we	can	patch	the	byte,	and	convert	it	to	code.	

	

Figure	11:	Case	2:	After	patching	

In	order	to	find	these	locations,	0ur	script	for	IDA	Pro	would	need	to	look	for	places,	where	we	XOR	the	
values	of	the	same	registers	(any),	followed	by	a	JZ	instruction.	The	search	function	would	look	like	this:	

def find_xor_jz():
 heads = Heads(SegStart(ScreenEA()), SegEnd(ScreenEA()))

 results = []
 found_first = False
 previous = ""
 for i in heads:
 if (found_first and GetMnem(i) == "jz"):
 results.append(previous)
 results.append(i)
 Message("Found possibly anti-disassembly technique at
0x%x, instruction: %s\n" % (previous,GetDisasm(previous)))
 Message("Found possibly anti-disassembly technique at
0x%x, instruction: %s\n" % (i,GetDisasm(i)))
 found_first = False
 elif GetMnem(i) == "xor" and GetOpnd(i,0) == GetOpnd(i,1):
 found_first = True
 else: found_first = False
 previous = i
 return results
	

The	script	will	go	through	the	entire	section,	looking	for	XOR	instruction,	followed	by	a	JZ.	

	 	

Case3: JZ/JNZ instruction with the same target
This	method	is	a	bit	similar	to	the	previous	one.	There	is	a	JZ	instruction	followed	by	a	JNZ,	where	both	
of	them	pointing	to	the	same	location.	The	effect	will	be	that	this	will	create	an	unconditional	jump,	but	
the	disassembler	won’t	recognize	it.	After	JZ	the	false	branch	will	be	checked	first,	which	will	be	JNZ,	and	
there	 again	 the	 false	 branch	will	 be	 checked,	which	 again	will	 be	 an	 E9	 (JMP)	 in	 our	 case,	which	will	
never	be	executed	in	real	life.	The	real	code	will	start	with	58	(POP):	

JZ	 JNZ	
	

POP	
74	 03	 75	 01	 E9	 58	

	
JMP	 		

	

Our	C	code	to	make	this	happen:	

#include <stdio.h>

void main() {
 printf("Hello, World!");

 asm(".intel_syntax noprefix\n"
 //"jz .later\n"
 ".byte 0x74\n"
 ".byte 0x03\n"

 //"jnz .later\n"
 ".byte 0x75\n"
 ".byte 0x01\n"

 //".later:\n"
 ".byte 0xe9\n"
);
 printf("Not seen");

}
Loading	it	to	IDA	Pro:	

	

Figure	12:	Case	3:	Messed	up	code	

We	can	see	that	our	code	is	obfuscated	again.	To	correct	and	patch	it,	we	can	use	the	very	same	method	
as	in	the	previous	two	cases.	

	

Figure	13:	Case	3:	After	fix	and	patching	

Our	IDA	Pro	script	function	to	find	such	places:	

def find_jz_jnz():
 results = []
 ea = FindBinary(SegStart(ScreenEA()), SEARCH_DOWN, "74 03 75 01")
 while(ea != BADADDR):
 if GetMnem(ea) == "jz":
 results.append(ea)
 results.append(ea+2)
 Message("Found possibly anti-disassembly technique at
0x%x, instruction: %s,%s\n" % (ea,GetDisasm(ea),GetDisasm(ea+2)))
 ea = FindBinary(ea, SEARCH_NEXT, "74 03 75 01")

 return results
	

The	function	will	search	through	the	section,	looking	for	the	bytes	“74	03	75	01”,	once	it’s	found,	it	will	
verify	that	it	is	indeed	a	beginning	of	a	JZ	section.	

	 	

Putting the entire script together
Here	 is	the	entire	script,	which	will	 look	for	all	 the	3	techniques	above,	and	mark	those	 locations	with	
red:	

from idautils import *
from idc import *

def find_xor_jz():
 heads = Heads(SegStart(ScreenEA()), SegEnd(ScreenEA()))
 results = []
 found_first = False
 previous = ""
 for i in heads:
 if (found_first and GetMnem(i) == "jz"):
 results.append(previous)
 results.append(i)
 Message("Found possibly anti-disassembly technique at
0x%x, instruction: %s\n" % (previous,GetDisasm(previous)))
 Message("Found possibly anti-disassembly technique at
0x%x, instruction: %s\n" % (i,GetDisasm(i)))
 found_first = False
 elif GetMnem(i) == "xor" and GetOpnd(i,0) == GetOpnd(i,1):
 found_first = True
 else: found_first = False
 previous = i
 return results

def find_jmp_ff():
 results = []
 ea = FindBinary(SegStart(ScreenEA()), SEARCH_DOWN, "EB FF")
 while(ea != BADADDR):
 if GetMnem(ea) == "jmp":
 results.append(ea)
 Message("Found possibly anti-disassembly technique at
0x%x, instruction: %s\n" % (ea,GetDisasm(ea)))
 ea = FindBinary(ea, SEARCH_NEXT, "EB FF")
 return results

def find_jz_jnz():
 results = []
 ea = FindBinary(SegStart(ScreenEA()), SEARCH_DOWN, "74 03 75 01")
 while(ea != BADADDR):
 if GetMnem(ea) == "jz":
 results.append(ea)
 results.append(ea+2)
 Message("Found possibly anti-disassembly technique at
0x%x, instruction: %s,%s\n" % (ea,GetDisasm(ea),GetDisasm(ea+2)))
 ea = FindBinary(ea, SEARCH_NEXT, "74 03 75 01")
 return results

def main():

 anti_da_locations = []
 anti_da_locations.extend(find_xor_jnz())
 anti_da_locations.extend(find_jmp_ff())
 anti_da_locations.extend(find_jz_jnz())
 for i in anti_da_locations:
 SetColor(i, CIC_ITEM, 0x0000ff)

if __name__ == "__main__":
 main()

