
Exploiting XPC in AntiVirus

Csaba Fitzl

Twitter: @theevilbit

Wojciech Reguła

Twitter: @_r3ggi

whoami - Wojciech

• Senior IT Security Consultant @ SecuRing

• Focused on iOS/macOS #appsec

• Blogger - https://wojciechregula.blog

• iOS Security Suite Creator

https://wojciechregula.blog

whoami - Csaba

• content developer at Offensive Security

• ex red/blue teamer

• macOS researcher

• husband, father

• hiking 🥾 🏔

• yoga 🧘

agenda
1. intro

2. statistics

3. typical issues

4. demos, bugs

5. recommendations for developers

6. the future

intro

Intro
• Our XPC background

• a lot of XPC bugs in the past

• 2 separate talks

• it’s time to team up

Intro to XPC

Source: „Auditing and Exploiting Apple IPC”, Ian Beer

Intro to XPC
• Mach Messages:

• Fundamental IPC mechanism for macOS

• You can send a message with data, memory or even another port

• One receiver and possible multiple senders

• Sent messages are placed in a message queue

• Similar to POSIX pipes

Intro to XPC
• XPC

• Built on top of Mach messages

• Dictionary based communication

• Strongly typed - strings, int64s, uint64s, booleans, dates, UUIDs, data, doubles, arrays

• NSXPC

• More convenient than Mach Ports and XPC

• Objective-C/Swift API for XPC C functions

• Send messages that conform your ObjC/Swift protocol

• Send serialized Swift objects

statistics

statistics
• Sample

• 28 AntiVirus software

• Tested only those we had access to

• 14/28 used XPC for IPC

• 14/28 used different IPC methods (mostly sockets or Mach messages)

• We assessed only XPC AVs (°͡ ʖ͜ °͡)

typical issues

typical issues
1. No client validation in XPC server

2. Lack of / Broken runtime protections in XPC client

3. Improper runtime protections verification in XPC server

4. Using insecure process identifier (PID) to perform client validation

Privileged XPC server running as root

Valid XPC client running as user

Malicious application running as user

typical issues

1. No client validation in XPC server

Perform privileged action

Sure! 👍

2. Lack of / Broken runtime protections in XPC client

Perform privileged action

Sure, you are a trusted app 👍

Inject m
alicious code 💉

3. Improper runtime protections verification in XPC server

Inject malicious code 💉

Nope, I’m hardened! 🛡

3. Improper runtime protections verification in XPC server

Inject malicious code 💉

OK, In my times there
were no runtime protections 👍

3. Improper runtime protections verification in XPC server

SecRequirement = “anchor apple generic and identifier
‘com.yourcompany.app’ and certificate leaf[subject.OU] =

‘ABCDEFG’”

SecRequirement = “anchor apple generic and identifier
‘com.yourcompany.app’ and certificate leaf[subject.OU] =

‘ABCDEFG’”

==

3. Improper runtime protections verification in XPC server

Perform privileged action

Sure, you are a trusted app 👍

Inject m
alicious code 💉

Hmm, code
signature matches the

right one 🤔

4. Using insecure process identifier (PID) to perform client validation

Perform privileged action

No, your code signature doesn’t
meet my requirements 😡

4. Using insecure process identifier (PID) to perform client validation

fork()

fork()

fork()

fork()

perform action

fork()

perform action

perform action

🤯
fork()

🤯

I have to put that action
requests on a queue

perform action

perform action

perform action

perform action
perform action

perform action

perform action

perform action

perform action

perform action

pop

Connection 1
PID

Action to perform

Connection 2
PID

Action to perform

…
PID

Action to perform

Connection n
PID

Action to perform

4. Using insecure process identifier (PID) to perform client validation

4. Using insecure process identifier (PID) to perform client validation

Change process’ image to the
legit executable using

posix_spawn()

1. Get PID from the connection object

2. Create a code object based on that PID

3. Perform signature check

4. isValid()

5. Establish connection or not

4. Using insecure process identifier (PID) to perform client validation

pop

Connection 1
PID

Action to perform

Connection 2
PID

Action to perform

…
PID

Action to perform

Connection n
PID

Action to perform

fork()

perform action

fork()

perform action

perform action

fork()

shell time (bugz)

MacKeeper
• multiple issues:

• uses process ID

• missing client "hardening"
validation

• attack: old MacKeeper client

MacKeeper
• LPE - how?

• Many exposed NSXPC
methods

• initializeWithOpenVPNPath:
callback:

• Exploit: inject to the old client
and establish valid NSXPC
connection

Intego Mac Security
• Multiple issues:

• uses process ID

• missing client "hardening"
validation

• Attack: old Intego installer
(2014)

Intego Mac Security
• Over 10 XPC services

• Full AV control

• setGlobalProtectionState:
authorization:completion
Handler:

• Attack: inject to the Intego
installer and establish valid
XPC connection

Avast & AVG
• Those AVs share the same XPC codebase

• Issue:

• missing client "hardening" validation

• Attack: Old Avast (2017)

Avast & AVG
• Full AV control

• sendAvRequest:withAuthorizationData:rights:replyBlock

• Exploit: Again 😉 inject to the old Avast and establish
valid XPC connection

• Requires user to authenticate

• … but it’s a legit popup

F-Secure (CVE-2020-14977 & CVE-2020-14978)

• multiple issues:

• missing client "hardening"
validation

• uses process ID

• attack: pid reuse, old client

• authorization limits exposure
(client requires:
system.privilege.admin)

• but, is this popup legit?

ClamXAV (CVE-2020-26893)
• multiple issues:

• missing client "hardening" validation

• uses process ID

• attack: old client (ClamXAV2)

ClamXAV (CVE-2020-26893)
• LPE - how?

• Helper offers useful functions

• trashFile, MoveFile 😎

• Control AV

• writeSettings 😎

• Exploit: move plist to LaunchDaemons

demo

Acronis
• issue:

• missing client "hardening" validation

• attack: old client (2020)

• LPE

• executeProcess 😎

• signature of process is verified, but we can use,
old injectable process +
DYLD_INSERT_LIBRARIES

demo

recommendations for
developers

the client

• signed with hardened runtime or library validation

• doesn't have any of these entitlements

• com.apple.security.cs.disable-library-validation

• com.apple.security.get-task-allow

• doesn't have script files (those are not verified for code signing on every
run)

the XPC service
• The client process verification in the shouldAcceptNewConnection

call should verify the the following:

1. The connecting process is signed by valid cert from Apple

2. The connecting process is signed by your team ID

3. (The connecting process is identified by your bundle ID)

4. The connecting process has a minimum software version, where the fix has
been implemented or it’s hardened against injection attacks.

• uses audit_token to identify the client

secure sample

• https://github.com/securing/SimpleXPCApp

• brought to you by Wojciech

https://github.com/securing/SimpleXPCApp

recommendations for users

Shield.app

• free and open source app to protect
against injection attacks

• developed by Csaba

• https://github.com/theevilbit/Shield

the future

the future
• no secure public API

• Apple's sample code is insecure

• many AVs used KEXT in the past -> won't work past Big Sur

• SEXT - IPC recommendation and sample (not secure) is XPC

• vendors have no XPC experience

• => vulnerabilities 😎

Further resources
• Wojciech Reguła (@_r3ggi): Abusing and Securing XPC in macOS Apps, Objective

by the Sea v3

• Julia Vashchenko (@iaronskaya): Job(s) Bless Us! Privileged Operations on macOS,
Objective by the Sea v3

• Tyler Bohan (@1blankwall1): OSX XPC Revisited - 3rd Party Application Flaws,
OffensiveCon 19

• Ian Beer (@i41nbeer): A deep-dive into the many flavors of IPC available on OS X,
Jailbreak Security Summit 2015

• Csaba Fitzl (@theevilbit): XPC exploitation on macOS, Hacktivity 2020

Thank you!

