
Evolution of macOS security
from the Desert to the Lake

Csaba Fitzl
Twitter: @theevilbit

whoami
• Principal macOS Security Researcher

@Kandji

• author of EXP-312 - macOS Exploitation
training (🐙) at OffSec

• ex red/blue teamer

• macOS bug hunter (~100 CVEs)

• husband, father

• hiking, trail running 🥾 🏔

Not what you expect...

agenda
1. GateKeeper improvements

2. KEXT mitigations

3. TCC improvements

4. Process Injection Mitigations

5. Launch Constraints

6. Closing Weaponization Paths

GateKeeper

Some Terms
• GateKeeper <> GateKeeper

• 3 different technologies:
• File Quarantine

• GateKeeper

• XProtect

This is File Quarantine

This is File Quarantine

What are they?
• File Quarantine (Mark Of The Web on the evil "W")

• Downloaded apps need user consent to run

• Always invoked on first execution

• GateKeeper

• Verifies code signature, and ensures it conforms to set
policy

• Can be disabled

• XProtect

• Checks against known malware

Pre-Mojave
• Mac OS X 10.5 Leopard (2007): File Quarantine

• Mac OS X 10.6 Snow Leopard (2009): XProtect

• Mac OS X 10.7 Lion (2011): spctl command line

• Mac OS X 10.8 Mountain Lion (2012): Launch of Gatekeeper
• Mac App Store

• Mac App Store and identified developers

• Anywhere

macOS 10.14 - Mojave
• Only integrated into LaunchServices

• Trivially to "bypass" via exec

macOS 10.15 - Catalina
• MAJOR change: integrated into spawn /

exec

• Introduction of notarization

• users can bypass with right-click -->
most common malware technique

macOS 15 - Sequoia
• Removed Right-click - open override

• Now users have to go to System Settings

• Important from malware point of view not really exploitation

KEXTs

KEXTs
• Kernel EXTensions

• if loaded ==> kernel code exec ==> long time target for exploits

• Mac OS X 10.10 Yosemite (2014) ==> requires KEXT signing certificate

• macOS 10.13 High Sierra (2017) ==> SKEL (Secure Kernel Extension
Loading) is introduced -> requires user approval

KEXT attacks - SKEL + BYOVD
• SKEL bypass by Patrick Wardle https://speakerdeck.com/patrickwardle/

the-mouse-is-mightier-than-the-sword

• achieved via synthetic mouse events

• bypass SKEL -> load a vulnerable 3rd party driver

• exploit 3rd party driver to gain kernel code exec
• Bring Your Own Vulnerable Driver (BYOVD) on the OS which shall not be

named

https://speakerdeck.com/patrickwardle/the-mouse-is-mightier-than-the-sword
https://speakerdeck.com/patrickwardle/the-mouse-is-mightier-than-the-sword
https://speakerdeck.com/patrickwardle/the-mouse-is-mightier-than-the-sword

KEXT attacks
• CVE-2020-9939 - Unsigned KEXT Load Vulnerability

• part of an exploit chain used in pwn2own 2020 - https://github.com/sslab-
gatech/pwn2own2020

• start loading an Apple signed driver

• swap driver after code signing verification

• with use of symlinks

• CVE-2021-1779
• same story, bypasses the patch

and then came Big Sur
• two major improvements:

1. KEXT is staged into Auxiliary Kernel Extension Collection (SIP protected)

2. Reboot is required => code signature is verified at load time

• an SKEL bypass could still work

• only 1 known bypass (Intel w/o T2 only) CVE-2022-46722 by Mickey Jin
• https://objectivebythesea.org/v6/talks/OBTS_v6_mJin.pdf

https://objectivebythesea.org/v6/talks/OBTS_v6_mJin.pdf

Apple Silicon
• 3rd party KEXTs are disallowed *

*unless permitted in recovery mode

Is Apple right?
• endless debate

• but!!!
• major attack surface reduction

• if attacker is in the kernel -> can do anything anyway

TCC

TCC
• Transparency, Consent and Control

• protects private data

• Mac OS X 10.8 Mountain Lion (2012): First release

• macOS 10.14 Mojave (2018): Major extension, lots of new categories

• ever growing categories since then

Private data everywhere
• grepping since 2019

• turns out private data is everywhere, not just where designed to be

• 30+ CVEs with private data leaks

• apps make copy of data and store it themselves

app data protection
• Apple closed the leaks 1 by 1

• eventually in Sonoma: protect every app's container
• only applies to sandboxed apps

• closes most remaining and possible future leaks universally

• also solves downgrade attacks, if app is changed ==> alert

mount attacks - 2020 - 2023 - the golden era

• CVE-2020-9771 - TCC bypass via snapshot mounting

• CVE-2021-1784 - TCC bypass via mounting over com.apple.TCC

• CVE-2021-30782 - TCC bypass via AppTranslocation service

• CVE-2021-30947 - TCC bypass with Time Machine

• CVE-2022-22655 - TCC bypass admin configuration

• CVE-2022-22655 - TCC location services bypass

• CVE-2023-40425 - Enable private data in logs

• CVE-2023-42936 - Enable Private Data in Logs v2

mount protection
• now every new TCC protected location gets mount protection

• exceptions exists, but rare

Process Injection

When can we inject
• process is:

• not hardened AND

• not platform binary AND

• not entitled

• or has "get-task-allow" entitlement

• Mojave: most apps are injectable

Hardened runtime
• Catalina: notarization kicks in

• soon hardened runtime becomes mandatory

• nowadays: non of the 3rd party processes are injectable *

*unless build with Electron...

(?) Sequoia
• Developer Tools = NO ==> can't get the task port of anything (unless

target signed with get-task-allow)

Launch Constraints

Let's review some exploits

TCC bypass with imagent.app
• Found by Adam Chester (@_xpn_)

• imagent.app with TCC and keychain
related entitlements

• loads plugins from:

• imagent.app/Contents/PlugIns

• code signing allows 3rd party plugins

• copy app to /tmp/ and load your plugin

TCC bypass using configd, "powerdir"
• Found by Jonathan Bar Or

(@yo_yo_yo_jbo)

• configd has user update rights (can
change HOME)

• -b allows loading an bundle (including
non Apple)

• normally launched by launchd but we
could start it via command line as well

LC

Launch Constraints
• introduced in macOS Ventura (13)

• mitigates many logic vulnerabilities

• defines 3 constraints:
• Self Constraints

• Parent Constraints

• Responsible Constraints

LC in Action

Launch Constraints Categories

LC Categories
• category = defines a set of launch constraints

• Ventura - 7 categories - documented by Linus Henze

• Sonoma - 18 categories - documented by Csaba Fitzl

• assigns each binary in the trust cache to a category

LC Category examples

🍌on-authorized-authapfs-volume || on-system-
volume - System or Cryptex

🍌launch-type == 1 - system service

🍌validation-category == 1 - must present in the
trust cache

🍌is-init-proc - launchd

LC Category examples

🍌on-authorized-authapfs-volume || on-
system-volume - System or Cryptex

🍌less restrictive

attack mitigation

LC attack mitigation
• imagent.app

• (on-authorized-authapfs-volume || on-system-volume)

• wouldn't be able to start a copy

• configd
• Parent Constraint: is-init-proc + system service

• wouldn't be able to start from command line

File Operations

Symlink Attacks
• redirect file operations with a symlink

• common TOCTOU attack (time of check time of use)

O_NOFOLLOW
• don't follow symlinks

• problem: only checks last path component

O_NOFOLLOW_ANY
• available since 2022

• none of the path components can be symlink

• getting more and more widespread

• mitigates most of the symlink attacks if used properly

Closing weaponization paths

Weap... WHAT?
• weaponization ~ turn an exploit into useful code execution

• e.g. you can:

• mount anywhere

• drop a file

• modify a file permission

• create a directory with user's permission

• etc...

• ==> turn them to code exec as root, sb escape, tcc bypass, etc...

Trick 1
• Can mount anywhere from Sandbox

• Closed: macOS Sequoia (Preferences is TCC protected)

Trick 2
• Can mount anywhere from Sandbox

• Closed: macOS Sequoia/Tahoe (Saved State is TCC protected)

Trick 3
• Can bypass SIP

• modify: /Library/Apple/Library/Bundles/TCC_Compatibility.bundle/
Contents/Resources/AllowApplicationsList.plist (=TCC.db)

• Closed: macOS Sequoia (no longer supported, file is not available)

Trick 4
• Can mount or drop file as root

• Use periodic scripts

• Closed: macOS Big Sur / Monterey (TCC protected)

Trick 5
• Can drop any file as root but with user ownership

• use /Library/LaunchDaemons

• Closed ~ Big Sur, file ownership must be root

Trick 6
• Can drop any file as root but with user ownership

• use /etc/pam.d

• Closed ~ Big Sur (pam.d is TCC protected)

conclusion

conclusion

• Apple is raising the bar continuously

• existing features gets improved

• lots of weaponization paths are closed

• logic exploitation gets harder and harder

Csaba Fitzl
Twitter: @theevilbit

Resources

• flaticon.com - Freepik, rsetiawan

http://flaticon.com
https://www.flaticon.com/authors/rsetiawan

