
Crash One - A Starbucks Story
CVE-2025-24277

Csaba Fitzl
X: @theevilbit

Gergely Kalman
X: @gergely_kalman

whoami - Gergely

• Independent bug hunter

• ex-dev / ex-sysadmin

• 20+ 0days on macOS

• lots of file op / filesystem research

• 📖: https://gergelykalman.com

https://gergelykalman.com

whoami - Csaba

• Principal macOS Security Researcher
@Kandji 🐝

• author of EXP-312 - macOS Exploitation
training (🐙) at OffSec

• macOS bug hunter (100+ CVEs)

• hiking, trail running 🥾 🏔

agenda
1. The Wall

2. The Light

3. Sandbox Extensions

4. Consuming the Token

5. Back-channel

6. The mighty rename

7. Weaponization Strategy

8. ACL Inheritance

9. Surviving fchown

10. Putting it together

11. Sandbox Escape

12. The Fix

13. Wrap-Up

Disclaimer: Starbucks didn't sponsor this talk

osanalyticshelperd
• responsible for creating crash logs

• ~/Library/Logs/DiagnosticReports - for user owned processes

• /Library/Logs/DiagnosticReports - for root owned processes

• runs as root

• potentially exploitable: writes to user owned directory

file system events

problems
• the process checks if the directory is a symlink (not shown)

• doesn't err out 🤷

• open uses O_EXCL | O_CREAT -> if file exists won't be created

• sandbox profile: /System/Library/Sandbox/Profiles/
com.apple.osanalyticshelper.sb

• doesn't allow writing anywhere

• just trying to redirect with symlink or hardlink doesn't work

the 1 thing we missed

(with-filter (extension "com.apple.osanalytics-sandbox.read-write")
 (allow file-read* file-write*))

Sandbox extensions
• Signed token in the form of a C string

• Allows dynamic expansion on the process' current privileges

• typically to access files or services

• flow:

• process A with access issues a token

• process A send the token to the sandbox process B

• process B consumes the token

• (process B releases the token)

Example API

API
• We issue a token for / -> valid for the whole file system

• com.apple.osanalytics-sandbox.read-write

• we need osanalyticshelperd consuming it

consume

XPC
• massive function

• lots of entries

• would take a lot to reverse

• let's crash something and sniff xpc

Plan

• 1. Create a token

• 2. Have osanalyticshelperd consume it

• 3. Have osanalyticshelperd create a normal crash file

• failed badly at step 3

• back-channel errors

back-channel

• purpose:

• send a file descriptor back to the caller (ReportCrash)

• caller can add more info - stack trace, vm map, etc...

• caller has to return "1", otherwise the crash log creation will bail out

• we created an anonymous XPC endpoint

• which returned 1

where are we?

• we can create a token, which is consumed by osanalyticshelperd

• we can create a crash log via xpc request

• if the directory is symlinked, we can drop that file anywhere (due to the token
allowing broad access)

Remember this?

Remember this?

• This is an “in-place” rename()

• Equivalent to: rename(“/a/b/c/x”, “/a/b/c/y”)

• A rename within the same directory, so most assume this is ok

• Most assume the kernel is “clever” (caching, etc…)

• It’s not

• In any rename(src, dst) the kernel will look up src and dst separately

• It has to - things might move around mid-syscall

• This is POSIX behavior

• Unintuitive, but useful: every rename() is racy!

the rename() pitfall

• I found 0days with this before

• Prerequisite: we must be able to control one of the path components

• Nice to have: control over the final filename (in dst)

• We match the prerequisite but have no filename control…

• But notice: the target runs as root

the rename() pitfall

• To win a tight race like this you must: be clever or use bruteforce

• You can ask me later about being clever 🤪

• Bruteforce is easier but only feasible if the race:

• has no serious side-effects

• is quick to run

• Both is true in our case

Winning the race

• If we atomically swap the parent directory with a symlink in a loop

• We will eventually end up with a rename that is equivalent to this:

• rename(“/original/x“, “/attacker_controlled/y”)

• This is an almost fully controlled file (over)write

• The only thing we don’t control is the file’s name

• A pretty powerful primitive, but lack of filename control sucks

Winning the race

what to target?

• We need a vector to turn a file write into a privilege escalation

• We control everything about the file, except it’s name

• A couple things might come to mind (cron, scripts, etc…)

• But this is macOS

• cron is TCC protected

• No scripts (not that we control the file’s name)

what to target?

• But there are: system services and sudo

• Generally speaking, any /etc/*.d/ directory is a good target

• because file names don’t matter here

• We ended up attacking sudo

sudo’s requirements

• sudo does require:

• the file to be root-owned

• restricted permissions (no write bits for “other”)

• We can solve this any number of ways: open fd, hardlink, symlinks, etc…

• But I used ACLs because they’re:

• Easy: No racing required

• Flexible: I retain access to the file forever

What are ACLs?

• “man acl”

ACL speedrun any%

• POSIX IEEE 1003.1e draft 17

• a revoked standard

• Got implemented on Linux and BSD (macOS) anyway (in different ways)

• On macOS it allows us to have inheriting ACLs:

• chmod +a attacker_user allow read,write,…,file_inherit,directory_inherit my_dir

• Anything placed in my_dir, attacker_user will be able to manipulate forever

ACL speedrun any%

• Bonus: This is invisible to most programs 👀

• You need to call libc functions to get the ACLs

• and most programs don’t do this

• sudo is one of these

fchown
• osanalyticshelperd sets the user to be the owner

• but! we want to retain root as the owner

• ACLs would solve this problem, but we found a way to sidestep this entirely

• simply:

the exploit

• racer in python + trigger in C

• trigger:

• handles the sandbox extension - allows target to create files anywhere

• XPC client - issues request to trigger rename()

• XPC server - for the backchannel / callback

the exploit

• racer:

• prepares the environment - needed links, ACLs, etc…

• executes trigger

• races the rename()

• detects success and retries

sb escape how-to

• platform binaries can lookup the XPC service

• we can't issue sandbox extensions, but osanalyticshelperd can use /
Library/Logs/DiagnosticReports

• what we do:

• drop a DMG via osanalyticshelperd (no quarantine flag will present)

• XPC allows full filename control

• open DMG with embedded unsandboxed LPE

from system.sb:

(with-filter (process-attribute is-platform-binary)
 (allow mach-lookup (global-name "com.apple.osanalytics.osanalyticshelper")))

Fixes #2

• We are not allowed to call the XPC endpoint anymore

• rename() changed to renameatx_np() with the flag RENAME_NOFOLLOW_ANY

• This was the correct way to fix!

• Not only that, but further attacks due to rename() also got cut off

